
Combinatorial Morse Theory

Groups, as men, will be known by
their actions.

In this essay we aim to give an account of Bestvina and Brady’s landmark
paper [BB], where they develop a version of Morse theory without calculus.
Their main theorem is a triumph for geometric and topological methods in
group theory because it sheds light on the geometric nature of the a priori
algebraic finiteness properties and gives a very different and tractable approach
to determining said finiteness properties: for example in homology the existence
of various long exact sequences makes calculating homology much easier than
trying to find strange resolutions or prove that none exist. As the epigraph
suggests, all of these benefits are reaped by considering suitable actions on
geometric objects.
The exposition begins with a review of metric geometry taken from [BH] before
moving on to the proof of the Main Theorem of [BB] and a discussion of some
immediate further applications, though the paper has been cited over 500 times
in the literature so naturally the discussion is far from exhaustive. The paper
is also known for proving that at most one of the Whitehead conjecture and
Eilenberg-Ganea conjecture is true, though there is now an alternative approach
in [Ho99].
The author would like to express his heartfelt thanks to Professor Henry Wilton
for a great many insightful comments and helpful discussions, which have been
indispensible in the study of the material and the writing of this essay.
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1 The CAT(κ) conditions
The exposition in sections 1, 2, and 5 follows [Wi].
A wide variety of conditions on metric spaces that try to generalise the notion
of curvature on manifolds have been given by mathematicians, most of them
being equivalent to each other in some sense. One of the most common, and the
one that will feature in this essay, is the CAT (κ) condition, based on thinness
of the triangles: a standard exercise for students who have first come across the
hyperbolic plane is to prove that for any triangle, any side lies in some neigh-
bourhood of the other two sides, with the size of the neighbourhood independent
of the triangle. In the Euclidean plane, this is incredibly false. To make this
idea precise will require some background. 1 Sections 1 and 2 will develop some
general theory of CAT (κ) spaces that will be used later.
Denote byMκ the unique connected, complete, 2-dimensional Riemannian man-
ifold of constant curvature κ, and Dκ its diameter. Note

• M1 ≡ S2, D1 = π

• M0 ≡ R2, D0 =∞

• M−1 ≡ H2, D−1 =∞

and the other Mκ are just scaled copies of these.
Let (X, d) be a complete, geodesic, proper metric space. Given two points p and
q, denote a geodesic between them by [p, q], and define a triangle with vertices
p, q, r to be the union of the geodesics [p, q] ∪ [q, r] ∪ [r, p]. Note that this is an
egregious abuse of notation since the geodesics, and hence the triangle, may not
be unique.
Let ∆ = ∆(x1, x2, x3) be a geodesic triangle in X, and suppose that it has
perimeter at most 2Dκ (so that the triangle inequality can hold). Then there
is, up to isometry, a unique triangle ∆ = ∆(x1, x2, x3) ⊆Mκ with dX(xi, xj) =
dMκ

(xi, xj), called the comparison triangle for ∆. There is a natural way to
define a surjection ∆ → ∆ such that restricting to an edge gives an isometry,
so given y ∈ [xi, xj ] there is a well-defined comparison point y ∈ [xi, xj ]. Since
geodesics in X may intersect each other (the map is an isometry only when
restricted to an edge), the map is not necessarily an injection, which means
that a point y ∈ ∆ may have up to three comparison points (but this is still
well-defined because we specify the edge as well as the point).

Definition. A complete, geodesic metric space (X, d) is CAT(κ) if, for any
geodesic triangle ∆ of perimeter at most 2Dκ and any p, q ∈ ∆, the comparison
points p, q ∈ ∆ satisfy dX(p, q) ≤ dMκ(p, q)
If X is locally CAT(κ), it is said to be of curvature at most κ. A locally CAT(0)
space is called non-positively curved.

Imagine for example a pair of geodesics emanating from a point x ∈ X. If,
locally, the points on the geodesics near x are closer than their comparison points
in the plane, that suggests that the space is somehow pushing them closer. Also
note that some authors, e.g. [BH], do not require X to be complete, and refer
to spaces with the additional requirement that they are complete as Hadamard
spaces. It is also proved in [BH] that a space is CAT(κ) iff it is CAT(κ′) for all

1Technically the condition described is known as the hyperbolic plane being δ-slim.
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κ′ > κ.
Examples of CAT(0) spaces include

• (real) inner product spaces

• trees, which are in fact CAT(κ) for any κ

• products X × Y of CAT(0) spaces X,Y when the product is given the l2
norm.

The next lemma proves convexity of the metric, an important property of
CAT(0) spaces in general.

Lemma 1. Let X be a CAT(0) space, γ, δ : [0, 1]→ X be geodesics. Then

d(γ(t), δ(t)) ≤ (1− t)d(γ(0), δ(0)) + td(γ(1), δ(1))

Proof. If γ(0) = δ(0) then apply the CAT(0) inequality followed by the fact
that in Euclidean space, d(γ(t), δ(t)) = td(γ(1), δ(1)).
For the general case, divide the quadrilateral formed by γ(0), δ(0), γ(1), δ(1) into
two triangles and apply the previous case.

Corollary 2. If X is a CAT(0) space it is uniquely geodesic, i.e. there is a
unique geodesic joining each pair of points

From this we deduce:

Lemma 3. Let X be a proper, uniquely geodesic space. Then the geodesics vary
continuously with their endpoints.

Proof. Suppose xn → x and yn → y. Let γn = [xn, yn], γ = [x, y]. WLOG take
the domains of all geodesics to be [0, 1].
Claim: γn → γ pointwise

Proof. If not, then there is a t0 and an ε > 0 such that d(γ(t0), γni(t0)) > ε
for some subsequence ni. Convexity of the metric implies that all the γn are
contained in a closed, hence compact, ball B of radius R, so d(γn(s), γn(t)) <
2R|s − t| for all s, t. The γn are an equicontinuous family of maps [0, 1] →
B, and hence there is a subsequence of the γni that converges uniformly to a
geodesic from x to y (on every interval apply continuity to show it is an isometric
embedding, hence geodesic), which by uniqueness is γ.

The convergence is uniform: let ε > 0. If d(γn(t0), γ(t0)) < ε/3 then
d(γn(t), γ(t)) < ε whenever |t− t0| < ε

6R . Apply compactness of [0, 1].

Proposition 4. Any CAT(0) space X is contractible.

Proof. For each y ∈ X let γ(·, y) be the unique geodesic from x to y. Then
F : X × [0, 1] → X, (y, t) 7→ γ(1 − t, y) is a homotopy equivalence from X to
{x}.

A sign that CAT (0) is a suitable generalisation to metric spaces of the notion
of non-positive curvature is that classical theorems of Riemannian geometry have
appropriate generalisations:
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Theorem 5. (Hopf-Rinow) Let X be a length space. If X is complete and
locally compact then it is proper and geodesic.

Theorem 6. (Cartan-Hadamard) Let X be a complete, locally compact, con-
nected length space of non-positive curvature. Then the universal cover X̃, with
the induced length metric, is CAT(0).

For proofs of these, see [Ba90].

2 Gromov’s Link Condition
The link condition is a first indication that cube complexes can be nice to work
with. It will reduce the question of existence of a non-positively curved metric on
a cube complex, a priori a non-trivial task potentially involving lots of intricate
geometric arguments, to a purely combinatorial check that even a computer can
do.

Definition. A locally finite cell complex X is Euclidean if every cell is isometric
to a convex polyhedron in Euclidean space and the attaching maps are isometries
from the lower-dimensional cell to a face of the new cell.

Any such X inherits a length metric which is proper and geodesic by Hopf-
Rinow. Note that the torus, as the quotient of a square, and the 2-sphere (as
a single cube), are cube complexes. The torus has a flat embedding into R4

so can be given a non-positively curved metric, but the sphere cannot. Apart
from the moral obstruction that spherical geometry should be very far away
from anything remotely resembling hyperbolic geometry, the sphere is simply
connected so by Cartan-Hadamard, if it were non-positively curved it would be
CAT(0) and hence contractible.

Definition. Let X be a geodesic space. The link of a point x0 ∈ X, denoted
Lk(x0), is the space of unit-speed geodesics γ : [0, a] → X with γ(0) = x0,
modulo the equivalence relation that γ1 ∼ γ2 iff they coincidence on some
interval [0, ε) with ε > 0. 2

The link of a point is really just a neighbourhood of the point, capturing the
behaviour very near the point. Lk(x0) is a cell complex as well: the intersection
of Lk(x0) with a cell of X of dimension n is a cell of dimension n − 1. For
example, in the torus constructed as above the link of the unique vertex looks
like

2An important theorem in mathematics is that mathematicians can’t agree on definitions.
An alternative definition of the link for vertices of the complex, which may be more intuitive,
is as follows: Let X be a Euclidean complex and v be a vertex of X. Let ε > 0 be much
smaller than the length of the shortest 1-cell attached to v (which exists by local finiteness).
Then the link of v is

Lk(v) = Sv(ε) = {x ∈ X : d(x, v) = ε}
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so is S1. At the corner of a cube, the link is also (homeomorphic to) S1 but
looks a bit different:

If one were to flatten the cube however, it wouldn’t be possible to do so iso-
metrically while keeping the S1 intact. This is because the total length of the
link is too short, or phrased differently, the angle is too small. This is a sign
of positive curvature, and in fact the angle will be a useful metric. This can be
generalised to any metric space, but since the complex is Euclidean, there is a
cheat.
On each cell, the link is part of a sphere, so has a natural spherical metric, which
is a length metric. These glue together to a length metric on Lk(x0). This metric
is denoted by ∠x0 , which is of interest due to the following theorem:

Theorem 7. (Gromov’s link condition) Any Euclidean complex X is non-
positively curved iff Lk(x0) is CAT(1) for every x0 ∈ X.

For a proof of this, see Chapter II.5 of [BH]

2.1 Injectivity radius and systole
We will need a technical lemma establishing when local to global lifting holds
for general CAT(κ) spaces.

Definition. Let X be a geodesic metric space. The injectivity radius of X
is the smallest r ≥ 0 such that there are distinct geodesics in X with common
endpoints of length r. The systole ofX is the length of the smallest isometrically
embedded circle in X.

An isometrically embedded circle gives distinct geodesics with common end-
points, so the systole is at least twice the injectivity radius.
In the more general setting of curvature at most κ, some of the previous results
hold but crucially convexity of the metric doesn’t hold when κ > 0. Not all is
lost, since short geodesics are still unique.

Proposition 8. Let X be a compact geodesic metric space of curvature at most
κ. Then X is not CAT(κ) if and only if it contains an isometrically embedded
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circle of length less than 2D(κ). If it does, then it contains a circle of length equal
to twice the injectivity radius of X; in particular, twice the injectivity radius is
equal to the systole.

2.2 Cube complexes
Definition. A Euclidean complex is a cube complex if every cell is isometric to
a cube.

As mentioned before, the link of the vertex of a complex is again a (simplicial)
complex. Denote by �n the regular n−cube in Rn with vertex at the origin, and
edges defined by the unit basis vectors. In the case of a regular n−cube, the link
is a subset of the unit sphere Sn−1 which is homeomorphic to an (n−1)−simplex,
so every edge in the link of a cube complex has length π

2 in the inherited spherical
metric. These are known as all-right spherical simplicial complexes,

Definition. A simplicial complex L is flag if, for every k ≥ 2, whenever K ⊆
L(1) is a subcomplex of the 1-skeleton that is isomorphic to the 1-skeleton of an
n−simplex, there is an n−simplex Σ in L whose 1-skeleton Σ(1) = K.

Informally, everything that can be filled in has been filled in. We are finally
in a position to reduce geometry to a computer check.

Theorem 9. An all-right spherical simplicial complex L is CAT(1) iff it is flag.

Note that the barycentric subdivision of any simplicial complex is flag, so
there is no topological obstruction.

Proof. Since the link of a vertex in an all-right spherical simplicial complex is
again an all-right spherical simplicial complex, it is natural to try to induct on
the largest dimension of any cube in the cube complex3. We will need the fact
that L is locally CAT(1) iff the link of every vertex is CAT(1). The proof of
Gromov’s link condition goes through to show this fact. The base case of a
0-dimensional cube complex, a discrete set of points, is trivial.
Suppose L is CAT(1). Links are also CAT(1) and therefore, by induction, are
flag. Suppose K ⊆ L(1) is isomorphic to the (n − 1)-skeleton of an n−simplex
and let v be a vertex of L contained in K. The link Lk(v) is flag, and Lk(v)∩K
is an (n− 2)−simplex, which bounds an (n− 1)−simplex in Lk(v). Therefore,
K bounds an n−simplex in L.
For the converse, suppose that L is flag. Links of vertices are also flag and so,
by induction, are CAT(1). Therefore L is of curvature at most one by the Link
Condition. By Proposition 8, it remains to show that L has no isometrically
embedded, locally geodesic circle of length less than 2π. Suppose therefore that
γ is such a locally geodesic circle.
Suppose that x ∈ L and that γ intersects Bx(π2 ). As before, fix x in S2 and let
γ be the development of γ into S2. Then γ ∩Bx(π2 ) has length π, and it follows
that this is also the length of the intersection of γ with Bx(π2 ).
Let u, v be vertices of L such that γ intersects Bu(π2 ) and Bv(

π
2 ). Because

γ is of length less than 2π, it follows from the previous paragraph that some
3One might worry whether this exists. By local finiteness, combined with the CAT(1)

condition meaning that only small triangles need to be considered, this will exist in some
neighbourhood of a given vertex, which is sufficient.
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point of γ is contained Bu(π2 ) ∩Bv(π2 ), and so u and v are distance less than π
apart. Therefore d(u, v) = π

2 . So the set of vertices of every open simplex that
γ touches span the 1-skeleton of a simplex and hence span a simplex, because
L is flag. So γ is contained in a simplex, which is absurd.

A cube complexX whose links are all CAT (1) spaces is non-positively curved
by the above and Gromov’s link condition, so its universal cover also has a
CAT (0) metric and is therefore contractible, meaning that this cube complex is
in fact a K(G, 1) for G = π1(X). Note that in the last paragraphs of the above
proof, the following lemma has been proved:

Lemma 10. Let v be a vertex in an all-right spherical complex and let B be
the ball of radius π

2 about v. Let x, y ∈ ∂B, and let γ be a geodesic from x to y
which intersects the interior of B. Then γ has length at least π.

Definition. A subcomplex M of an all-right piecewise spherical complex N is
said to be convex if whenever a, b ∈ M satisfy dN (a, b) < π, the geodesic [a, b]
is contained in M .

Definition. A subcomplexM ⊂ N is said to be full if whenever a set of vertices
of M spans a simplex τ ⊂ N , then τ ⊂M .

Notice how similar this is to the condition of being flag.

Lemma 11. Let M ⊂ N be a full subcomplex of an all-right spherical simplicial
complex N . Then M is convex in N

This lemma will be used later to determine the homotopy type of certain
complexes in the proof of the Main Theorem.

Proof. Suppose that M ⊂ N is full, and that a, b ∈M satisfy dN (a, b) < π. We
have to show that the geodesic [a, b] is contained in M . Let σa (respectively σb)
denote the minimal simplex of N which contains a (respectively b). Note that
σa and σb are contained in M .
If a = b the result is trivial. If a 6= b the set of all simplices σ which intersect
[a, b] nontrivially in their interiors is non-empty.

Claim. The vertices of such σ are contained in the union of the set of vertices
of σa and the set of vertices of σb.

Proof of claim. Suppose σ is a simplex of N whose interior intersects [a, b] non-
trivially, and let v ∈ σ be a vertex. The path [a, b] intersects the open star
about v (= the open ball in N of radius π/2 about v). Now if both dN (a, v) and
dN (v, b) are at least π/2 the previous lemma implies that the length of [a, b] is
at least π contradicting the assumption dN (a, b) < π. Thus one of dN (a, v) and
dN (v, b) is strictly less than π/2. Suppose dN (a, v) < π/2. Then either a = v
or a lies in the interior of a simplex with vertex v. In either case, v is a vertex
of σa, and we are done.

Hence, σ ⊂M by fullness. But [a, b] is contained in the union of such σ, and
so [a, b] ⊂M as required.

Observe that the claim is a natural way to use the condition of fullness, much
like checking the existence of a simplex in a flag complex is reduced to checking
the existence of the 1−skeleton.
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Definition. Let L be a simplicial complex, and σ a simplex of L. Denote by
St(σ, L) the closed star of σ, i.e. the subcomplex of L consisting of all simplices
which contain σ. Denote by St′(σ, L) the subcomplex of L consisting of all
simplices which contain a face of σ.

Proposition 12. Let L be a flag complex equipped with the all right CAT (1)
metric and let σ be a simplex of L

1. St′(σ, L) is contractible

2. Let τ be another simplex of L such that d(a, b) < π
2 for any a ∈ τ and

b ∈ σ. Then σ ∩ τ 6= ∅.

Proof. 1: For each simplex ρ in L, the closed star St(ρ, L) is contractible as
it is a union of simplices, any subcollection of which intersects in a common
(contractible) face containing ρ.
Given a set {v1 . . . vn} of vertices of σ let < v1 . . . vn > denote the face of σ that
they span. Since L is flag,

St(v1, L) ∩ · · · ∩ St(vn, L) ⊂ St(< v1 . . . vn >,L)

and the reverse inclusion trivially holds, so St(v1, L) ∩ · · · ∩ St(vn, L) = (<
v1 . . . vn >,L) is contractible. Hence

St′(σ, L) =
⋃
{St(v, L) : v a vertex of σ}

is also contractible.
2: Consider the simplicial map from St′(σ, L) to a 1−simplex (of length π

2 since
L is all right) mapping σ to a vertex and the frontier 4 Fr(St′(σ, L)) to the
other vertex. This is a distance non-increasing simplicial map on each simplex
of St′(σ, L) so is nonincreasing in the spherical metric.
Now suppose that a ∈ τ and b ∈ σ are such that d(a, b) < π

2 , but σ ∩ τ = ∅.
Then a geodesic γ from a to b intersects Fr(St′(σ, L)), and so γ∩St′(σ, L) maps
onto the 1-simplex. But this implies that d(a, b) is at least the distance in the
1−simplex, which is π

2 , a contradiction.

3 Finiteness properties of groups
In this sectionH is a discrete group, and R is a unital commutative ring with 1 6=
0, which will be viewed as a trivial module over the group ring RH. Finiteness
represents a degree of control over a mathematical object: when reasoning about
finite sets, for example, one can appeal to induction. When generalising to well-
ordered sets, again what makes induction work is the fact that any decreasing
sequence is finite. In geometric group theory, the groups studied are usually
not finite, but finitely generated or even finitely presentable. This section will
describe further hierarchies of finiteness conditions algebraically, and the main
theorem will show that there is in fact associated geometry.

Definition. A module P is projective if and only if for every surjective module
homomorphism f : N � M and every module homomorphism g : P → M ,

4the closure minus the interior, also known as the boundary
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there exists a module homomorphism h : P → N such that f ◦ h = g
Equivalently, P is projective if and only if every short exact sequence of the
form

0→ A→ B → P → 0

is split exact.
Equivalently, P is projective if and only if it is a direct summand of a free
module

Definition. A groupH is said to be of type FPn(R) (also writtenH ∈ FPn(R))
if there exists a resolution (exact sequence)

Pn → Pn−1 · · · → P0 → R→ 0

of the trivial RH module R by finitely generated projective RH−modules Pi.
H is said to be of type FP (R) if the resolution can be taken to be of the form

0→ Pn → Pn−1 · · · → P0 → R→ 0

for some n, i.e. a finite resolution.

Definition. A group is of type FLn(R), (respectively FL(R)), if it satisfies the
conditions of the previous definition with all instances of the word ’projective’
replaced by the word ’free’.

Since projectives are precisely direct summands of free modules, FPn and
FHn are equivalent by just taking direct sums with complements, and FL =⇒
FP since free modules are projective, but the converse is open.
Note that any module has resolutions by free, projective, or injective modules,
but showing existence involves taking, say, a free module on the generators
bijecting with the generators of the previous module, which may be infinite at
some point in the tower, so the crux of the definition is in requiring finiteness
of the resolution.
Resolutions of this form are useful because of the following fact: Projective
resolution of a module M is unique up to a chain homotopy, i.e., given two
projective resolutions P0 →M and P1 →M ofM there exists a chain homotopy
between them. This means properties calculated from a specifically chosen
resolution, such as the homology, are actually invariants of M and can be used
to compare different modules M .

Definition. A group H is said to be of type Fn if there exists an Eilenberg-
MacLane space K(H, 1) with finite n−skeleton, and of type F if the K(H, 1) is
finite.

Lemma 13 (Schanuel). If 0→ K → P →M → 0 and 0→ K ′ → P ′ →M → 0
are short exact sequences of R−modules and P and P ′ are projective, then K⊕P ′
is isomorphic to K ′ ⊕ P .

Proof. Define the following submodule of P ⊕ P ′, where φ : P → Mandφ′ :
P ′ →M :

X = {(p, q) ∈ P ⊕ P ′ : φ(p) = φ′(q)}. The map π : X → P, where π is de-
fined as the projection of the first coordinate of X into P , is surjective. Since
φ′ is surjective, for any p in P , one may find a q ∈ P ′ such that φ(p) = φ′(q).
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This gives (p, q) ∈ X with π(p, q) = p. Now examine the kernel of the map:
kerπ = {(0, q) : (0, q) ∈ X}

= {(0, q) : φ′(q) = 0}
∼= kerφ′ ∼= K ′.

Wemay conclude that there is a short exact sequence 0→ K ′ → X → P → 0.
Since P is projective this sequence splits, so X ∼= K ′ ⊕ P . Similarly, we can
write another map π : X → P ′, and the same argument as above shows that
there is another short exact sequence

0→ K → X → P ′ → 0

and so X ∼= P ′ ⊕K. Combining the two equivalences for X gives the desired
result.

This is used to prove the following lemma, showing that the finiteness con-
ditions FPn(R) are generally different:

Proposition 14. If there exists a resolution

0→ Zn → Pn → Pn−1 · · · → P0 → R→ 0

where the Pi are all finitely generated projective RH modules, and Zn isn’t
finitely generated over RH, then H is of type FPn(R) but not FPn+1(R).

Proof. See [Br].

Motivated by homological considerations from algebraic topology, there is
another family of finiteness conditions:

Definition. A group H is said to be of type FHn(R) if it acts freely, faithfully,
properly discontinuously, cellularly, and cocompactly on a cell complex X with
H̃i(X,R) = 0 for all i ≤ n− 1.
It is said to be of type FH(R) if the complex X is R−acyclic.

It is natural to ask how these various finiteness properties relate to each
other.

Lemma 15. • H ∈ FHn(R) =⇒ H ∈ FPn(R)

• H ∈ FH(R) =⇒ H ∈ FP (R)

• If H acts freely, faithfully, properly discontinuously, cellularly, and cocom-
pactly on an (n− 1) connected cell complex X, then H is of type Fn

Proof. For the first two, H acts on a cell complex X whose reduced chain
complex with coefficients in R is the desired resolution. Note that vanishing of
the reduced homology groups is a statement of exactness at the relevant modules
in the resolution, and since the RH module structure comes from the action of
H on X, so compactness of the quotient X/H gives finite generation of the
chain groups when viewed as RH−modules
For the last one, X/H has no homotopy groups in dimensions 2 to n− 1, so it
suffices to kill the higher homotopy groups from dimension n up by adding cells
of dimension n + 1 and up, which is a standard way of producing a K(H, 1).
Note that the n−skeleton is finite throughout the process.
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As can be seen in the proof, one of the most common methods of producing
resolutions is by algebraic topology.
Proposition 14 gives a further (topological) method of distinguishing the various
finiteness properties:

Lemma 16. Suppose a group H acts freely, faithfully, properly discontinuously,
cellularly, and cocompactly on a cell complex X which satisfies

• H̃i(X,R) = 0 for all i ≤ n− 1.

• H̃n(X,R) isn’t finitely generated as an RH−module

Then H is of type FHn(R) but not FPn+1(R).

3.1 Summary of relations
Fn =⇒ FHn ⇐⇒ FLn =⇒ FPn

F =⇒ FH =⇒ FL =⇒ FP

It is unknown whether FP =⇒ FL or FL =⇒ FH hold.
It will be shown later that F =⇒ FH and Fn =⇒ FHn for n ≥ 2 are not
reversible, but note that FH1 =⇒ F1, e.g. by the previous lemma.
A group of type FL1 is finitely generated and seen to be of type FH1 by
considering its Cayley complex with respect to a presentation for this generating
set. If the group is of type FL2 then the first homology of the quotient of this
Cayley complex is finitely generated. Add 2-cells equivariantly to the Cayley
complex kills the first homology and shows the group is of type FH2. Hence
FLn is equivalent to FHn for n = 1, 2 but for larger n this remains open.

4 Morse functions
In this section Morse functions and their basic properties are introduced. The
results on extending homotopy type are analogous to those in the smooth case.

Definition. Let X be a CW-complex. X is said to be an affine cell-complex if
it has the following extra structure. For every cell e there is a convex polyhedral
cell Ce in some fixed Rm and a characteristic function χe : Ce → e such that
the restriction of χe to any face of Ce is a characteristic function of another cell,
possibly composed by a partial affine homeomorphism of Rm. An admissible
characteristic function for e is any function obtained from χe by precomposing
with a partial affine homeomorphism of Rm.

Definition. Let X be an affine cell complex. A map f : X → R is a Morse
function if it satisfies

• for every cell e of Xfχe : Ce → R extends to an affine map Rm → R and
fχe is constant only when dim(e) = 0

• the image of the 0-skeleton is discrete in R

These are discrete analogues of critical points being non-degenerate in the
smooth case. For a non-empty closed J ⊂ R denote by XJ the set f−1(J)
and let Xt = X{t}, called the level-sets of the Morse function f .
The set X(−∞,t] is called the sublevel set corresponding to Xt

12



Lemma 17. If J ⊂ J ′ ⊂ R are connected and XJ′\XJ contains no vertices of
X, then XJ ↪−→ XJ′ is a homotopy equivalence

Proof. For each cell e of X and each admissible characteristic function χe :
Ce → X we construct a deformation retraction 5 Hχe

t of Ce ∩ (fχe)
−1(J ′) to

Ce ∩ (fχe)
−1(J) such that

• if χe is precomposed with a partial affine homeomorphism h then Hχeh
t =

h−1Hχe
t h

• the restriction of Hχeh
t to a face of Ce is the deformation retraction asso-

ciated to that face.

Observe that if C is a convex cell in Euclidean space and F,G are two disjoint
faces with F top dimensional and G either top dimensional or a vertex, then
any deformation retraction from ∂C\F to G extends to a deformation retraction
from C toG. This then allows us to define the deformation retraction inductively
on dim((e).

4.1 Ascending and descending links
Definition. A piecewise linear or PL manifold is a manifold homeomorphic to
a simplicial complex that is also equipped with a maximal atlas of charts with
transition functions given by piecewise linear functions.

The PL structure on an affine cell complex can be given inductively over
skeleta in such a way that the characteristic functions are automatically PL.
Let X(i) denote the i−skeleton and note X(0) is trivially PL. All attaching
maps ∂C → X(i) are PL since the restrictions to faces are PL by induction, and
each cell is a convex Euclidean polyhedron so there is a natural way to give the
X(i+1) skeleton a PL structure, which works.
When α : A→ B is a PL map between polyhedra and a ∈ A is an isolated point
of α−1α(a), then α induces a map α∗ : Lk(a,A) → Lk(α(a), B). In particular,
when χe : Ce → X is an admissible characteristic function of a cell e of an
affine cell complex X and w is a vertex of Ce, this allows us to identify the link
Lk(v,X) with ∪{χe∗(Lk(w,Ce)) : χe(w) = v}

Definition. The ascending link, also denoted ↑ − link, is

Lk↑(v,X) = ∪{χe∗(Lk(w,Ce)) : χe(w) = vandfχehas a minimum atw}

The descending link, also denoted ↓ − link, is

Lk↓(v,X) = ∪{χe∗(Lk(w,Ce)) : χe(w) = vandfχehas a maximum atw}

These are trivially subcomplexes of Lk(v, V ).

Lemma 18. (Morse) Let f : X → R be a Morse function on an affine cell
complex as above. Suppose J ⊂ J ′ ⊂ R are closed and connected, infJ = infJ ′

, and J ′\J contains only one point r of f(0-cells). Then XJ′ is homotopy
equivalent to XJ with the copies of Lk↓(v,X) (v any vertex with f(v) = r)
coned off. (Note: some vertices in X may have trivial descending links so define
the cone of an empty set to be a vertex.)

5This notion of deformation retraction is called a strong deformation retraction by some
people.
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An analogous statement holds when infJ = infJ ′ is replaced by supJ =
supJ ′ and Lk↓(v,X)by Lk↑(v,X), and the same proof works after noticing that
f is a Morse function if and only if −f is too, and the ascending links of f are
the descending links of −f and vice versa. Henceforth, for all statements which
are about ascending and descending links, only one case will be treated since
the proof works for the other case as well after using this observation.

Proof. The argument is similar to that of the previous lemma. SinceXJ′∩(−∞,r] ↪−→
XJ′ is a homotopy equivalence by Lemma 17 we may assume that sup J ′ = r.
Let r − ε = supJ . If a cell e of X has the property that min f |e > r then e is
disjoint from XJ′ . For any admissible characteristic function χe : Ce → X of
any other cell e we construct, inductively on dim e, a deformation retraction of
(fχe)

−1(−∞, r]) onto the subset

(fχe)
−1(−∞, r − ε]) ∪

⋃
{F : F is a face ofCewithfχe(F ) ⊂ (−∞, r]}

satisfying the naturality properties stated in the proof of Lemma 17.
These deformation retractions induce a deformation retraction of XJ′ onto XJ

with the cones attached as stated in the Lemma.

Corollary 19. Let f : X → R be a Morse function on an affine cell complex
as above. Suppose that J ⊂ J ′ ⊂ R are nonempty and connected.

1. If each ascending and descending link is homologically n− connected, then
XJ ↪−→ XJ′ induces isomorphisms in H̃i for i ≤ n and an epimorphism on

˜Hn+1

2. If each ascending and descending link is simply connected, then XJ ↪−→ XJ′

induces an isomorphism on π1.

3. If each ascending and descending link is connected, then XJ ↪−→ XJ′ in-
duces an epimorphism on π1.

Proof. Since the image of the zero skeleton is discrete, one can show this induc-
tively by applying Lemma 17 and Lemma 18 to get the ’shape’ and finish off
using the Mayer Vietoris sequence for the first part, and the Seifert-van Kampen
theorem for the second and third parts.

5 Right-angled Artin groups
In this section, following both [BB] and [Wi], we introduce an important class
of groups called right-angled Artin groups, or RAAGs, and some of their basic
properties. The Main Theorem will be about these groups. The appendix will
describe related results that show other reason why RAAGs are of interest.

Definition (right-angled Artin group). Let N be a simplicial graph, i.e. a graph
as a graph theorist (or maths Olympiad contestant) would consider. Then

AN = 〈V (N) | [u, v] = 1 for all (u, v) ∈ E(N)〉

is the right-angled Artin group, or graph group of N .

14



Let L be the unique flag complex with L(1) = N . AN is also denoted by
AL. Note that this group has a natural surjective map φ to Z by mapping
each generator to 1 ∈ Z and we will be interested in finiteness properties of the
kernel, denoted HL.

Example. If N is the discrete graph on n vertices, then AN = Fn. In this case
Σ = N .

Example. If N is the complete graph on n vertices, then AN = Zn. In this
case Σ is the n− 1 dimensional tetrahedron.

Definition. Associated to a right-angled Artin group AΓ is a cube complex
SΓ constructed as follows. Begin with a wedge of circles attached to a point
x0 and labeled by the generators s1, . . . , sn. For each edge, say from si to sj
in Γ, attach a 2-torus with boundary labeled by the relator sisjs−1

i s−1
j . For

each triangle in Γ connecting three vertices si , sj , sk, attach a 3-torus with
faces corresponding to the tori for the three edges of the triangle. Continue this
process, attaching a k−torus for each set of k mutually commuting generators
(i.e., generators spanning a complete subgraph in Γ). The resulting space, SΓ,
is called the Salvetti complex for AΓ. It is clear, by construction, that the
fundamental group of SΓ is AΓ.

Alternatively, given a simplicial group N , the Salvetti complex SN is the
cube complex defined as follows:

• Set S(2)
N is the presentation complex for AN .

• For any immersion of the 2-skeleton of a d-dimensional cube, we glue in a
d-dimensional cube to S(2)

N .

Alternatively, we have a natural inclusion S(2)
N ⊆ (S1)|V (N)|, and SN is the

largest subcomplex whose 2-skeleton coincides with S(2)
N .

In fact, there is a recipe for getting the link out of N .

Definition. The double D(L) of a simplicial complex L is defined as follows:

• The vertices are {v+
1 , . . . , v

+
n , v

−
1 , . . . , v

−
n }, where {v1, . . . , vn} are the ver-

tices of L.

• The simplices are those of the form 〈v±i0 , . . . , v
±
ik
〉, where 〈vi0 , . . . , vik〉 ∈ L.

In [BB] this is called the spherical complex S(L). Note that

• D(L) contains many copies of L, especially L+, which is spanned by the
v+
i , and L

−, which is spanned by the v−i .

• L+ (and also L−) is a retract of D(L), using the map that sends v±i to vi.
Note also that D(L) is flag iff L is flag.

Lemma 20. The link of the unique vertex x0 of SL is isomorphic to D(L)

Proof. For v ∈ L(0), by construction there are precisely two corresponding ver-
tices in Lk(x0), which are denoted v± according to the orientation of the 1-cell
labelled by v. A set of vertices {v0 . . . vn} spans a simplex in L iff the only face
of [0, 1]L

(0)

spanned by the corresponding directions is a cube (using the second
definition of the Salvetti complex). This contributes 2n+1n−cells to Lk(x0), one
for every possible choice of ± signs for the n+ 1 vertices {v0 . . . vn}.
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The double of a flag complex is flag so by the link condition SL is non-
positively curved. Due to the observation after Theorem 9 the Salvetti complex
is a K(AL, 1). We will study the kernel HL by considering a map from SL to
S1 inducing the map φ on π1 that lifts to a φ−equivariant Morse function.

Theorem 21. Construct a map l : SL → S1 by isometrically mapping each
circle in the construction of SL, representing an oriented generator, to the loop
representing 1 ∈ Z = π1(S1). Each higher dimensional cube in the construction
of SL is glued on isometrically, so if it has coordinates (x1, . . . , xn) mapping it
to (x1 + · · · + xn) mod 1 ∈ R/Z = S1 defines l on all of SL. By construction
this induces the homomorphism φ, and

1. The lift of l to universal covers is a φ equivariant Morse function f : X →
R.

2. All ↑ − and ↓ −links of X with respect to f are isomorphic to L.

Proof. By inspection of the definition, l is non-constant on every cube, so its
lift f is too. The image of the zero skeleton is just the lifts of the basepoint of
the image S1, i.e. Z ⊂ R. Hence f is a Morse function.
At any point in the pre-image of the 0−skeleton, the link is isomorphic to D(L)
by Lemma 20, and moreover the vertices v± indicate whether the vertex lies in
the ascending link or the descending link. Thus the ascending (resp. descending)
link consists of precisely those simplices which are spanned by the v+ (resp. v−),
and we have already remarked that these are isomorphic to L.

16



6 The Main Theorem
In this section we follow [BB] and describe the homotopy type of (sub-)level sets
to prove their main theorem.

Theorem 22. Let L be a finite flag complex, AL be the associated right angled
Artin group, and φ : AL → Z be the associated homomorphism with kernel HL.

1. H ∈ FPn+1(R) if and only if L is homologically n−connected.

2. H ∈ FP (R) if and only if L is acyclic.

3. H is finitely presented if and only if L is simply connected.

The first two are statements about homology, so it is unsurprising that it is
possible to prove them by computing the homology of sub-level sets, as is done
in section 7 of [BB]. That calculation is omitted here as all implications will
follow from the description of the homotopy type of (sub-)level sets. However,
the right to left implications are general facts about Morse functions, unrelated
to the structure of a right angled Artin group, so we record the proof here:

Theorem 23. Suppose a group G acts freely, faithfully, properly discontinu-
ously, cellularly, and cocompactly on a contractible affine cell complex X such
that if e is a cell of X with characteristic function χe and g ∈ G, then gχe is an
admissible characteristic function for g(e). Suppose φ : G → Z is an epimor-
phism with kernel H, and that f : X → R is a φ−equivariant Morse function
(when Z acts on R by translations).

1. If all ↑ −links and ↓ −links are homologically n−connected, then H ∈
FHn+1(R).

2. If all ↑ −links and ↓ −links are R−acyclic, then H ∈ FH(R).

3. If all ↑ −links and ↓ −links are simply connected, then H is finitely pre-
sented.

Proof. 1: By Corollary 19, for t < s the inclusion X(−∞,t] ↪−→ X(−∞,s] in-
duces isomorphisms on H̃i for i ≤ n and an epimorphism in ˜Hn+1. Since
X = ∪r∈ZX(−∞,r] is contractible, it is acyclic, and homology commutes with
direct limits so ˜Hi(X(−∞,t]) = 0 for i ≤ n and all t. Similarly, ˜Hi(X[t,∞)) = 0
for i ≤ n and all t. Applying Mayer-Vietoris to X = X(−∞,t] ∪ X[t,∞)) shows
that the intersection Xt is homologically n−connected. But since H is the ker-
nel, it acts freely and cocompactly on the level set, so is of type FHn+1(R).
2: The proof of 1 shows that Xt is acyclic, so the action of H on the level set is
again the desired action. 3: From 1, ˜H0(Xt) = 0 so Xt is connected. By Corol-
lary 19 Xt ↪−→ X induces an isomorphism on π1. Hence Xt is simply connected
and H is finitely presented by item 3 of Lemma 15.

Some immediate applications to distinguishing finiteness conditions:

1. Let L = Sn, triangulated as the (n + 1)−fold join of 0−spheres. The
associated group is Fn+1

2 , and from the homology of spheres one sees
HL is of type FPn but not FPn+1. This example first appeared in full
generality in [Bi76]
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2. So far the ring of coefficients has played no real role. Here is an example
where it does: Let p be a prime. Consider the (appropriately triangulated)
Moore space L obtained by attaching an (n + 1)−cell to an n−sphere
(n ≥ 1) via an attaching map of degree p. Writing down the corresponding
long exact sequence for a pair in homology shows that L is acyclic over
any field of characteristic 6= p, but over fields of characteristic p it is only
(n− 1)−connected.

3. Let L be an acyclic nonsimply-connected finite flag complex of dimension
2. Then HL is FP (over all rings) but it is not finitely presented. Fur-
thermore, the cohomological dimension of HL is 2 since the level sets are
2-dimensional and acyclic. It is natural to ask if such groups HL have
2-dimensional Eilenberg-Mac Lane spaces. Thus one obtains a family of
potential counterexamples to the Eilenberg-Ganea conjecture. We will
explore this idea further after the proof of the main theorem.

6.1 Sheets
Definition. A subspace F of a complete geodesic metric space is called a flat of
dimension k (more briefly, a k−flat, or just a flat if the dimension is unspecified)
if it is isometric to Euclidean space Ek. When X is the universal cover of a
Salvetti complex as considered above, define a sheet in X to be a flat which is
a subcomplex of the pre-image in X of one of the tori in QL.

Sheets will be viewed as building blocks for X and will be instrumental
in determining the homotopy type of (sub-)level sets in the next section. In
general, there may be many more flats than sheets: when L consists of two
points, the associated RAAG is F2 and X is the tree with every vertex of degree
4 with edges directed and labelled a or b. Then the flats will correspond to
paths through edges all of the same label, of which there are countably many,
but there are uncountably many biinfinite geodesics.
Given a vertex v ∈ X and A ⊂ X a union of sheets, we define C(v,A) to be the
cone on Lk(v,A), and consider it as a small neighborhood of v in A. Similarly,
C↓(v,A) is just the cone on Lk↓(v,A).
There is a natural retraction rv : Lk(v,X) → Lk↓(v,X) mapping the vertices
of the form v+ to v− and fixing the v−, which extends simplicially to give rv.
This further extends to a map on cones C(v,X) → C↓(v,A), also denoted by
rv. Some further properties:

Proposition 24. 1. X is covered by sheets.

2. The intersection of any collection of sheets is either empty, a vertex, or a
sheet.

3. All (sub-)level sets of f restricted to a sheet are contractible. Moreover,
all ↑ − and ↓ −links of the restriction are single simplices.

4. The retraction rv preserves sheets through v, i.e. if A ⊂ X is a union of
sheets and v ∈ A, then the restriction of rv induces retractions Lk(v,A)→
Lk↓(v,A) and C(v,X)→ C↓(v,A), also denoted by rv. Moreover, r−1

v (Lk↓(v,A)) =
Lk(v,A).
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Proof. 1: QL is a union of tori.
2: This holds for the intersection of two sheets: if the sheets project to tori which
have intersection strictly containing the unique point in QL, the projections
intersect in some torus T , so the intersection of the sheets lies in the pre-image
of T . Now induct on the number of sheets.
3: The restriction of f to a k−dimensional sheet is given by the linear map
(x1, . . . , xk) 7→ x1 + · · ·+ xk where Rk is cubed by Zk. Hence the sub-level sets
are half-spaces cut out by a hyperplane, which are contractible.
4: Immediate from definitions.

6.2 The homotopy type of sublevel sets
In this section X will be built up out of sheets.

Lemma 25. Let w be a vertex of X and let K be the union of a collection of
sheets containing w. Let J be a closed connected interval in R. Then

1. K is contractible.

2. All ↑ and ↓ links of K at vertices apart from w are contractible, and at w
they are naturally isomorphic.

3. KJ = K ∩XJ is homotopy equivalent to Lk↓(w,K) when w /∈ XJ and is
contractible if w ∈ XJ

Proof. Since the intersection of sheets containing w is again a sheet containing
w, K is a cone with conepoint w, hence is contractible.
As before, it suffices to show this for descending links. Let x 6= w be a vertex of
K. There is a sheet S containing w and x which is minimal with this property
with respect to inclusion (given by intersecting all sheets containing both). Then
Lk↓(x,K) is the union of simplices of the form Lk↓(x, S

′) where S′ ranges over
the sheets in K that pass through x and w, all of which contain Lk↓(x, S), so
the union is contractible.
There is a natural central symmetry defined on each sheet S through w mapping
ascending links to descending links of each sheet bijectively, and in a compatible
way with respect to inclusions of sheets, so these combine to give an isomorphism
between Lk↓(x,K) and Lk↑(x,K).
Suppose w ∈ XJ . By Lemma 18 KJ ↪−→ K is a homotopy equivalence, so KJ

is contractible. If w /∈ XJ , WLOG assume that w is above XJ , i.e. f(w) > t
for all t ∈ J . The proof in the other case is exactly the same. Choose ε ∈ (0, 1)
such that f(w)− t > ε for all t ∈ J , which is possible since J is closed. It follows
from Lemma 17 that

KJ ↪−→ K(−∞,f(w)−ε]
K←−↩f(w)−ε

are homotopy equivalences, so it suffices to showKf(w)−ε is homotopy equivalent
to Lk↓(w,K). Now observe that since K is a union of sheets, {Lk↓(w, S)}
and {S ∩ Xf(w)−ε} are closed contractible covers of Lk↓(w,K) and Kf(w)−ε,
which are both closed under intersections. But there is a 1-1 order preserving
correspondence between {Lk↓(w, S)} and {S ∩Xf(w)−ε}, so the sets that they
cover, i.e. Lk↓(w,K) and Kf(w)−ε, are homotopy equivalent.
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Lemma 26. Let X be a CAT(0) cube complex, Q ⊂ X a cube, and c ∈ X a
vertex. Then the minimal distance from c to Q is attained at a unique vertex of
Q.

Proof. Uniqueness: suppose that there are two points x, y ∈ Q realizing the
minimum distance. Cubes are convex in X so the geodesic [x, y] lies in Q. Ap-
plying the CAT(0) inequality to the geodesic triangle xyc shows that interior
points of [x, y] are closer to c than the endpoints, contradicting the choice of x
and y.
Attained at a vertex: Let γ be a distance minimizing geodesic from c to Q, and
suppose that γ doesn’t end at a vertex of Q. Then γ meets Q in the interior of
some face. Let e denote an edge of this face.
For each point p ∈ γ choose a minimal cube Qp containing p.

Claim. There is a cellular map from the union of all Qp over p ∈ γ to a
1−simplex taking γ to an interior point of the simplex.

Proof. Let Q0 be the minimal cube containing the edge e and the initial seg-
ment of γ. Here γ is parametrized so that it starts at Q and ends at c. This
cube contains the face of Q at which c originates, and so has a metric product
structure, defined as the (l2) product of the metric on the codimension one face
and metric on the edge e. Since the cubes are Euclidean, this gives rise to a
notion of dot product. Since c minimizes the distance from c to Q we see that
Q0 ∩ c is perpendicular to the e−coordinate. The metric product structure in-
duces a codimension-1 metric product structure on the face of intersection of
Q0 and the next cube Q1 of the collection along the geodesic c. This extends
uniquely to a codimension-1 product structure of Q1 and so on. Finally, we map
the e−coordinate onto a 1-simplex, collapsing the other coordinates to a point.
The geodesic c remains perpendicular to the e−coordinate throughout, and so
maps to an interior point of the 1-simplex.

Since c lies on the geodesic γ, it also gets mapped to an interior point, so
can’t have been a vertex, contradicting the initial assumption.

For the next result we need the following more general definition of a link,
which can be found in [BH]:

Definition. Let S be a simplex in an abstract simplicial complex K. The
link of S in K, denoted Lk(s,K), is the subcomplex of K consisting of those
simplices T such that T ∩ S = ∅ and T ∪ S is a simplex of K.

One can see that this agrees with the previous definition when S is a single
vertex and that this is downward-closed so is indeed a subcomplex.
Now we build up X as a union of sheets and study the change in homotopy type
inductively. Choose a base vertex v in X and an ordering v = v1, v2, v3 . . . of
all the vertices of X such that d(v, vi) ≤ d(v, vj) whenever i ≤ j. Let Ki denote
the union of all sheets through vi.

Lemma 27. Ki is a convex subset of X.
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Proof. It suffices to show that geodesics in Ki are also geodesics in X. This
proof breaks down into a series of reduction steps.
Step 1: Geodesics which lie inside a cube in Ki are locally geodesics in X, so
the places we have to check are where geodesics pass through vertices or pass
between cubes through a common face.
Suppose a geodesic in Ki passes through a vertex y. The two directions of the
geodesics define points in Lk(y,X). To be a local geodesic, the distance between
these two points should be at least π (consider two rays passing through the
centre of a sphere in Euclidean space: if the spherical distance between the
points on the sphere were less than π one could shorten the path by joining
points on the sphere by a line). This holds in Ki, so in this case it suffices to
show

Lk(y,Ki) ⊂ Lk(y,X) is convex (A)

Similarly, if a geodesic in Ki intersects a cube Q (the common face) in a single
interior point,it will be a local geodesic in X if the link of Q in Ki is a convex
subcomplex of the link of Q in X. Let y be any vertex of Q and let σQ be the
simplex of Lk(y,X) determined by Q.
There is a natural identification of Lk(Q,Ki)

6 with Lk(σQ, Lk(y,Ki)) as fol-
lows: if T ∪Q determines a simplex of Ki (and hence a |T | dimensional face of
Lk(Q,Ki)), then each subset of vertices of T determines a simplex that contains
y so it determines a subset of vertices in Lk(σQ, Lk(y,Ki)) that spans a face.
Lk(Q,X) can similarly be identified with Lk(σQ, Lk(y,X)) so the convexity
condition becomes

Lk(σQ, Lk(y,Ki)) ⊂ Lk(σQ, Lk(y,X)) is convex (B)

Step 2: By Lemma 11 it suffices to show

Lk(y,Ki) is a full subcomplex of Lk(y,X) (A’)

for all vertices y ∈ Ki, and

Lk(σQ, Lk(y,Ki)) is a full subcomplex of Lk(σQ, Lk(y,X)) (B’)

for all cubes Q ⊂ Ki and vertices y ∈ Q. B’ follows from A’ by the following
observation: Let M be a full subcomplex of a simplicial complex N and σ ⊂M
be a simplex. Then Lk(σ,M) is a full subcomplex of Lk(σ,N).
Step 3: Observe that if M is a full subcomplex of a simplicial complex N ,
then the associated double D(M) is a full subcomplex of the D(N), and that
D(Lk↓) = Lk by Lemma 20. Hence it suffices to show

Lk↓(y,Ki) is a full subcomplex of Lk↓(y,X) = L (A”)

Step 4: Here we show property (A”) holds. Since X is a union of sheets,
Lk↓(vi,Ki) = Lk↓(vi, X), so A” clearly holds. Let y ∈ Ki be a vertex other
than vi. Then the geodesic [vi, y] defines a unique point of Lk↓(y,X), which is
in fact a point in Lk↓(y,Ki) since Ki is a geodesic cone on vi. The image under
the retraction ry gives a point p ∈ Lk↓(y,Ki). Again because Ki is a geodesic

6Technically the definition of links is for simplicial complexes, but since we are working
with cube complexes, it is easy to obtain a triangulation and the link is independent of choice
of triangulation.
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cone on vi, any simplex of Lk↓(y,Ki) comes from a sheet through y and vi, so
the simplex must contain p. Thus one sees that Lk↓(y,Ki) is just the union U
of all simplices σ ⊂ L which contain p, and τ is a simplex of U if and only if
there is a simplex σ containing both τ and p.
This is full in L: let σp denote the minimal simplex of L which contains p. Then
σp is a face of each simplex containing p. In particular, if v ∈ U is a vertex,
then either v ∈ σp or {v} ∪ σp spans a simplex. Hence, by induction on j, if
{w1 . . . wj} ⊂ U is a collection of vertices which span a simplex σ ⊂ L then
{w1 . . . wj} ∪ σp spans a simplex of U . Thus σ ⊂ U , so U is a full subcomplex
of L.

Now fix n > 1, and let K = Kn ∩ (K1 ∪ . . .Kn−1).

Lemma 28. K is the union of sheets containing w and at least one vj with
j < n.

Proof. The union is contained in K so it suffices to show that given x ∈ K there
exists a sheet S ⊂ X through vn which contains both x and some vj with j < n.
Suppose v ∈ K is a vertex. v ∈ K implies v ∈ Kn ∩Ki for some i < n. Let Kv

denote the union of all sheets through v. Then vi, vn ∈ Kv, which is convex by
Lemma 27, so contains the geodesic [vi, vn].
Let Q denote the minimal cube containing vn and the end segment of the
geodesic [vi, vn]. By minimality, Q ⊂ Kv, so Q lies in a sheet S through v.
Now it suffices to show that one of the vertices of Q is in the set {v1 . . . vn−1}.
By construction of the ordering on the vi, the geodesic [v1, vi] is not longer than
[v1, vn], and so the CAT(0) inequality implies that the distance from v1 to any
interior point of [vi, vn] is strictly less than d(v1, vn). In particular this is true
for points of Q which lie in the interior of [vi, vn]. Thus vn isn’t the closest point
of Q to v1. By Lemma 26 the closest point is some vertex, and the ordering
implies that this vertex is in the set {v1 . . . vn−1}.
Now suppose x ∈ K isn’t a vertex. Then x ∈ S′ ⊂ Kn ∩ Ki for some sheet
S′ and some i < n. By the above argument each vertex of S′ is contained in
a sheet through vn and some vi, i < n. There are only finitely many sheets
through vn so some sheet S must contain a maximal general position subset of
vertices of S′. This must then contain S′, otherwise we would be able to find a
larger sheet.

Lemma 29. Lk↓(vn,K) ∼= Lk↑(vn,K) is contractible.

Proof. Let a be the point in Lk(vn, X) determined by the geodesic [vn, v] and
let b = r(a) ∈ Lk↓(vn, X) be the image of a under the retraction rvn . Let σ
denote the smallest simplex of Lk↓(vn, X) that contains b.
Let S denote the collection of simplices τ in L = Lk↓(vn, X) such that the sheet
through vn corresponding to τ contains one of the vi.

Claim. Every face of σ is in S.

Proof of claim. Let S0 be the sheet through vn such that Lk↓(vn, S0) = σ.
By Proposition 24 (4) Lk(vn, S0) contains a. Let Q be the smallest cube
that contains vn and such that Lk(vn, Q) contains a. Thus Q ⊂ S0 and
σ = rvn(Lk(vn, Q)). Now we show each vertex of Q which is distance one
from vn is in {v1 . . . vn−1}, so σ and all its faces are in S.
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Let v′ be a vertex of Q which is distance one from vn. Then the angle at vn
defined by [vn, v] and [vn, v

′] is less than π/2. Thus the distance from v to a
point on the edge [vn, v

′] which is close to vn is less than d(v, vn). Lemma 26
implies that d(v, v′) = d(v, [vn, v

′]) < d(v, vn), so v′ ∈ {v1 . . . vn−1}.

Claim. S = {τa simplex of L : τ ∩ σ 6= ∅}

Proof of claim. For ⊂, let τ be an element of S and let S be the corresponding
sheet in K. Then S contains vi for some i < n. In the triangle δ(vn, v, vi) we
have d(v, vn) ≥ d(v, vi) and thus the angle at vn is < π/2. Hence Lk(vn, S)
contains a point at distance < π/2 from a defined above, so τ = Lk↓(vn, S) =
rvn(Lk(vn, S)) contains a point at distance < π/2 from b = rvn(a). Thus it
must intersect σ by Proposition 12 (2).
For the reverse inclusion, if S1 ⊂ S2 are sheets and Lk↓(vn, S1) ∈ S then
Lk↓(vn, S2) ∈ S by definition of S. In particular, if a vertex of a simplex τ
of L is in S, then so is τ . If τ ∩ σ 6= ∅ then τ contains a vertex of σ. But all
vertices of σ are in S by the first claim, so τ ∈ S.

By the previous lemma Lk↓(vn,K)and Lk↑(vn,K) are isomorphic to the
simplicial complex determined by S, and the second claim implies that this
simplicial complex is St′(σ, L), which is contractible by Proposition 12 (1).

Theorem 30. XJ is homotopy equivalent to a wedge of L’s, one for every
vertex of X not in XJ .

Proof. Write XJ as the increasing union of X(n) := XJ ∩ (K1 ∪ · · · ∪Kn) and
note X(n) = X(n− 1) ∪ (XJ ∩Kn). Furthermore,

X(n− 1) ∩ (XJ ∩Kn) = XJ ∩ (Kn ∩ (K1 ∪ · · · ∪Kn − 1))

is homotopic to Lk↓(vn,K = Kn∩ (K1∪ · · ·∪Kn−1)) (by Lemma 25 3), which
is contractible by the previous lemma. Lemma 25 3 also implies that XJ ∩Kn is
either contractible or homotopy equivalent to L depending on whether vn ∈ XJ .
It follows inductively that X(n) is homotopy equivalent to a wedge of L’s, one
for every vi, i ≤ n, not contained in XJ . Since inclusions X(n − 1) ↪−→ X(n)
respect the wedge structure, the theorem follows.

The ’if’ direction of all three has been done previously, so now we use this
theorem to show the ’only if’ direction. We need one more result before proving
the Main Theorem.

Proposition 31. Let H be a finitely presented group. Suppose a group H
acts freely, faithfully, properly discontinuously, cellularly, and cocompactly on
a connected cell complex Y . Then it is possible to attach to Y finitely many
H−orbits of 2−cells so that the resulting complex is simply connected.

Proof. Since H is finitely presented, its presentation complex P is compact, and
H acts freely, faithfully, properly discontinuously, cellularly, and cocompactly
on its simply connected Cayley 2-complex P̃ . Construct an H−equivariant
α : Y (2) → P̃ as follows: fix a vertex v in Y and map it to a vertex w in P̃ . Pick
representatives for the H−orbits of the 1−cells attached to v and map them to
1−cells attached to w. This leaves only one possibility for mapping the 0−cells
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attached to these 1−cells, i.e. the neighbours of v. Repeat until all H−orbits
of 0−cells are mapped. This terminates in finite time since the quotient H\Y is
compact so there are only finitely many orbits of 0− and 1−cells, and all orbits
are reached since Y is connected. Extend this H−equivariantly. Now there is a
natural extension of the map to 2−cells, which is well-defined since P̃ is simply
connected. Similarly, there is an H−equivariant cellular map β : P̃ (1) → Y (1) ⊂
Y .
Attach one orbit of 2−cells to Y for every orbit of 2−cells in P̃ , of which there
are only finitely many since H is finitely presented. Then β extends to an
equivariant cellular map ˜beta : P̃ (2) → Y (2). The map Y (1) × {0, 1} → Y
defined by (y, 0) 7→ y, (y, 1) 7→ βα(y) extends to an equivariant cellular map
F : Y (1)×{0, 1} → Y ∪ Y (0)× [0, 1]→ Y since Y is connected. Attach an orbit
of 2−cells to Y for every orbit of 1−cells in Y to extend F to an equivariant
cellular map F̃ : Y (1) × [0, 1] → Y . For example, consider when Y (1) consists
of a single edge. Then Y (1) × {0, 1} → Y ∪ Y (0) × [0, 1] is the boundary of a
square, and the 2−cell added is just the interior of the square.
Let l be a loop in Y (1). Then F̃ is a homotopy between l and βα(l). α(l) is
nullhomotopic in P̃ (2), thus so is β̃α(l) = βα(l).

Proof of Main Theorem. 1, 2: Let n be the smallest integer such that H̃n(L) 6=
0. Then H̃n(Xt) is not a finitely generated RH−module as there are infinitely
many vertices not in the level set Xt, so by Lemma 16 H is not of type FPn+1.
3: If L is not connected, then by 1 H is not finitely generated, let alone finitely
presented. If L is connected but not simply-connected, then π1(Xt) is the free
product of π1(L)’s, one for every vertex not in Xt. Suppose H were finitely
presented. By the previous proposition π1(Xt) is generated by the H translates
of finitely many loops, and since X is contractible each of these finitely many
loops is null homotopic in X. Since a homotopy is a map from a compact
space, its image is also compact, hence all (finitely many) will be contained in
some X[t−T,t+T ]. H acts on level sets, so all the H−orbits of these loops will
be null homotopic in X[t−T,t+T ], so Xt ↪−→ X[t−T,t+T ] induces the trivial map
on π1. Corollary 19 says that the induced map on π1 is an epimorphism, so
X[t−T,t+T ] is simply connected. But there are infinitely many vertices lying
outside X[t−T,t+T ], so if L is not simply connected then X[t−T,t+T ] can’t be
either.

Remark: In [BG] the authors use Brown’s criterion to provide a shorter
proof of the main theorem, but do not determine the exact homotopy type of
the sublevel sets.

7 Applications
The number of citations of [BB] speaks to the utility of combinatorial Morse
theory as a tool in geometric group theory, and it would be well beyond the
scope of this essay to give a complete survey of the various directions the theory
has grown in. For example, see[Bra99], where the author constructs hyperbolic
groups with finitely presented non-hyperbolic subgroups, among many other in-
teresting applications.
Both applications below will involve the Poincare homology sphere, so for com-
pleteness’ sake we define it.
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Definition. The alternating group A5 embeds in SO(3) via its action on the
icosahedron. In particular, it is a discrete subgroup that acts freely and prop-
erly discontinuously on SO(3). The Poincare homology sphere is the manifold
SO(3)/A5.

This is a homology sphere, i.e. a topological space with the same homology
as a sphere, and the only homology 3−sphere with finite fundamental group.
For other descriptions of the Poincare homology sphere, see [KS].

7.1 Eilenberg-Ganea versus Whitehead
In [BB] the authors show that at most one of the Eilenberg-Ganea conjecture
and the Whitehead conjecture is true using their main theorem, which remains
one of the milestones in the history of these notoriously difficult conjectures
that have resisted mathematicians’ efforts to solve them for decades. See the
appendix for a brief introduction to the conjectures.
Given a vertex v ∈ X we identify the complex L with the descending link
Lk↓(v;X). Thus each point x ∈ L determines a unique geodesic gx ⊂ Kv

through v. Starting at any vertex v which is above a level set Xt, i.e. f(v) > t,
the geodesic gx eventually reaches Xt, which gives a way of projecting links to
a level set.

Definition. Let t ∈ R and v ∈ X be a vertex such that f(v) > t, and M ⊂ L
be a subcomplex of L = Lk↓(v,X). Define the shadow of M on Xt to be the
set

Sv,M =
⋃
{gx : x ∈M} ∩Xt

Proposition 32. Note that Sv,L is homeomorphic to L by the map which sends
each simplex σ ⊂ L to Sv,σ ⊂ Sv,L. Give L a metric by requiring that each
2-simplex is an equilateral triangle with side lengths equal to |f(v)− t| and then
taking the induced path metric. With this metric, the homeomorphism is a
quasi-isometry with constants which are independent of |f(v)− t|.

Proof. Metrize Sv,L by restricting that of Kv. The quasi-isometry constants are
then bounded by a multiple of the cardinality of the 1-skeleton of L. But Kv is
a convex subset of X by Lemma 27. Hence we obtain the same quasi-isometry
inequality for Sv,L as a subset of X.

In particular, by taking |f(v) − t| to be arbitrarily large, one obtains arbi-
trarily large copies of L quasi-isometrically embedded into Xt.

Theorem 33. Let L be a flag triangulation of a spine 7 of the Poincare ho-
mology sphere. Then either HL is a counterexample to the Eilenberg-Ganea
conjecture or there is a counterexample to the Whitehead conjecture.

Proof. The associated X is 3-dimensional so the level set X0 is 2-dimensional.
Since L is acyclic X0 is acyclic as well, and since HL acts freely and cocompactly
on X0 it follows that HL has cohomological dimension 2. If HL does not have
geometric dimension 2 then the Eilenberg-Ganea conjecture is false.
Suppose HL does have geometric dimension 2. Then there exists a contractible

7It is often ambiguous what spine means in different contexts in geometry and topology.
Here it just means the 2−skeleton.
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2-complex Y on which HL acts freely, faithfully, properly, and cellularly. Since
HL is FP∞ by the Main Theorem it is finitely generated and we may assume
it acts co-compactly on the 1-skeleton of Y . Since Y is contractible there exists
an HL-equivariant quasi-isometry φ : Xt → Y .

MetrizeXt and φ(Xt) byHL-equivariant path-metrics. HL then acts on both
properly and cocompactly (even though HL may not act on Y cocompactly) by
isometries, so is quasi-isometric to both. In particular, Xt and φ(Xt) are quasi-
isometric to each other.

Thus point pre-images of φ will have diameters bounded by the quasi-
isometry constants. Denote the restriction φ|Sv,L by φv.

By the previous proposition, we may choose a vertex v ∈ X so that |f(v)− t|
is large in comparison with the quasi-isometry constants (since there are arbi-
trarily large copies of L). For each point x ∈ Sv,L the geodesic [x, v] determines
a unique minimal simplex σ ⊂ L = Lk↓(v,X) containing it. The pre-image
φ−1
v (φv(x)) will be contained in the contractible (by Proposition 12) subcom-

plex Sv,St′(σ,L). For vertices v with |f(v) − t| large enough one can define a
left homotopy inverse to φv by taking each vertex of φv(Sv,L) to a point of its
φv-pre-image, and extending over skeleta. This is well defined up to homotopy
since X is the universal cover so is simply-connected. By functoriality the map
on π2 induced by inclusion is split injective so π2(Sv,L) ⊂ π2(φv(Sv,L)). How-
ever, L is the 2−skeleton, in particular homotopic to the homology sphere with
a point removed, so in the universal cover S3 this corresponds to removing 120
points. Letting S denote the set of removed points,

π2(Sv,L) ∼= π2(L) = π2(L̃) ∼= H2(S3\S) 6= 0

Hence φv(Sv,L) ⊂ Y is a non-aspherical subset of an aspherical 2−complex.

7.2 An infinite relation gap
The material here follows [Ha].
The group ring ZG admits a natural ring homomorphism to Z by sending all
the formal symbols g 7→ 1. The kernel of this homomorphism is known as the
augmentation ideal and is denoted IG. Given a short exact sequence of groups

1→ N → F (S)→ G→ 1

where F (S) is a free group on the set S, one obtains a short exact sequence of
ZG−modules

0→ N/[N,N ]→ ⊕s∈SZG{s} → IG→ 0

In particular, if G has an n−generator m−relator presentation, then so does
IG. Let d(G) be the minimal number of generators needed to generate G, and
dG(IG) be the minimal number of generators of IG as a left ZG− module. The
difference d(G) − dG(IG) is called the generation gap. In [CGK] the authors
show that arbitrarily large generation gaps can occur for finite groups.
F acts on N by conjugation since N is normal, and N acts trivially by conju-
gation on its abelianisation Nab, so the action of Γ on Nab by conjugation is
well-defined.
As a consequence, min{k|∃s1 . . . sk ∈ F,N = 〈〈s1 . . . sk〉〉} is an upper bound on
the rank of Rab as a ZΓ module. Let dF (N) denote the minimal number of gen-
erators needed to normally generate N , and dG(N/[N,N ]) the minimal number
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of generators of N/[N,N ] as a left ZG− module. The next natural question one
can ask is what values the relation gap dF (N) − dG(N/[N,N ]) can take, but
for finite groups this is an open problem. For finitely generated infinite groups
Morse theory gives a way of creating a group with infinite relation gap. We will
need a result of homological algebra:

Proposition 34. Let Γ = F/R, where F is a free group of finite rank m. Then
Γ is of type FP2 if and only if Rab is finitely generated as a ZΓ module

Let L be a flag triangulation of a spine of the Poincare homology sphere
as before. By the main theorem, HL is of type FP (hence FP2), but since L
isn’t simply connected HL is not finitely presented. HL is of type FP2 so Rab is
finitely generated as a ZΓ module by the proposition, it isn’t of type F2, so any
set of relations is infinite and hence the relation gap is infinite. Note that this
construction works for any acyclic non-simply-connected finite flag complex L
of dimension 2.
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Appendix

A The Eilenberg-Ganea conjecture
Definition. The cohomological dimension cdZ(G) of a group G with Z coeffi-
cients is the smallest number n such that there exists a projective resolution

0→ Pn → · · · → P0 → Z→ 0

over the trivial ZG-module Z where each Pi is a finitely generated projective
ZG-module, and infinity if no such resolution exists.

Definition. The geometric dimension gd(G) of a group G is the smallest n
such that there exists an n−dimensional K(G, 1).

The universal cover of the K(G, 1) gives rise to a projective resolution so
gd(G) ≥ cd(G). The reverse inequality is almost always true, and is the
Eilenberg-Ganea theorem [EG]:

Theorem 35. Let G be a finitely presented group and n ≥ 3. Suppose cdZ(G) ≤
n. Then there exists an n−dimensional aspherical CW complex X such that
π(X) = G.

When n = 1, it was proved in [Sta] that

Theorem 36. Every finitely generated group of cohomological dimension one
is free.

(Finitely generated free groups act on trees, the universal cover of an ap-
propriate wedge of circles.) Hence this leaves open only the case n = 2, the
Eilenberg-Ganea conjecture.

B The Whitehead conjecture
The treatment in this section follows [Ro].
A 2−dimensional complex K is aspherical if and only if π2(K) vanishes: the
universal cover K̃ is again a 2−dimensional complex whose π1 and π2 also vanish,
so by the Hurewicz theorem all its homology groups vanish in dimensions 1 and
2. Since K̃ is a 2-complex all its higher homology groups vanish, so again by
Hurewicz so do all its homotopy groups.

Conjecture 37. If L is an aspherical 2−complex, then so is any subcomplex
K ⊂ L.

The Whitehead conjecture was at least partly motivated by the study of
knot complements S3\K (where K is a smooth embedding of S1), which are
now fairly well understood.

Theorem 38. Conjecture 37 implies that knot complements are aspherical.

Proof. Glue a (thickened) meridian disk into S3\K to get a 3-ball which col-
lapses to an aspherical 2-complex L. If Conjecture 37 were true then L has to
be aspherical.
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The asphericity of knot complements has since been shown in [Pa] using
techniques of 3-manifold theory. There have been partial results:

Theorem 39. The Whitehead conjecture is true if either

• K has at most one 2-cell [Co], or

• π1(L) is finite and non-trivial, abelian, or free

However, stronger results that would imply the Whitehead conjecture, such
as Wise’s conjecture, are known to be false [Fi], and some partial results have
been proved showing where to look for counterexamples. First note that if
K ⊂ L with π2(L) = 0 is a counterexample it can be assumed that:

• L is obtained from K by attaching 2-cells: we can always add the 1-
skeleton of L to K without changing its asphericity).

• K is finite: If K were infinite and non-aspherical, then restrict K to the
image of a nontrivial map f : S2 → K

• L is contractible: take instead the universal cover L̃

Theorem 40. [Ho] If the Whitehead conjecture is false then there exists a
counterexample K ⊂ L such that either:

1. L is finite and contractible and K = L\e for one 2-cell e.

2. L is the union of an infinite chain of finite non-aspherical subcomplexes
K = K0 ⊂ K1 ⊂ K2 ⊂ . . . where each Ki ⊂ Ki+1 is nullhomotopic

Theorem 41. [Lu] If the Whitehead conjecture is false then there is a coun-
terexample of the second type.

Note that the answer to the corresponding problem of whether πn(L) = 0 implies
πn(K) = 0 when Kn ⊂ Ln are n−dimensional complexes for n 6= 2 is known:
π1(K1)→ π1(L1) is always injective. On the other hand, for dimension n ≥ 3,
it is false. Consider K = Sn−1 and L = Dn. For n = 3, the Hopf map gives a
non-trivial element of π3(S2) ≡ Z (by the long exact sequence for the fibration
S1 → S3 → S2), and similarly it was checked that for n ≥ 4, πn(Sn−1) ≡ Z/(2),
[Hu].
So only the 2-dimensional case, namely Whitehead’s Conjecture, remains open.

C Further facts about Right-Angled Artin Groups
The material in this section follows [Wi].
If C ∼= [−1, 1]n, then a midcube M ⊆ C is the intersection of C with {xi = 0}
for some i.

Now if X is a non-positively curved cube complex, andM1,M2 are midcubes
of cubes in X, we say M1 ∼M2 if they have a common face, and extend this to
an equivalence relation. The equivalence classes are immersed hyperplanes. We
usually visualize these as the union of all the midcubes in the equivalence class.
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Note that in general, these immersed hyperplanes can have self-intersections,
hence the word ”immersed”. Thus, an immersed hyperplane can be thought of
as a locally isometric map H # X, where H is a cube complex.
In general, these immersed hyperplanes can have several “pathologies”. The
first is self-intersections, as we have already met. The next problem is that of
orientation, or sidedness. For example, we can have a (closed) Mobius band.
This is bad, for the reason that if we think of this as a (−1, 1)-bundle over H,
then it is non-orientable, and in particular, non-trivial.
In general, there could be self intersections. So we let NH be the pullback
interval bundle overH. That is, NH is obtained by gluing together {M×(−1, 1) |
M is a cube in H}. Then we say H is two-sided if this bundle is trivial, and
one-sided otherwise.

Sometimes, we might not have self-intersections, but something like this:

This is a direct self-osculation (when H is two sided and a pair of points in the
same component of the boundary have the same image in X). We can also have
indirect osculations (different components of the boundary) that look like this:

Finally, we have inter-osculations, which look roughly like this:

While in the figures above the cubes meet along an edge, meeting along a vertex
would also be considered an osculation.

Definition. A cube complex is special if its hyperplanes do not exhibit any of
the following four pathologies:

• One-sidedness

• Self-intersection

• Direct self-osculation
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• Inter-osculation

Example. A cube is a special cube complex.

Example. If X is special then so is any covering space of X.

Example. If X = SN is a Salvetti complex, then it is a special cube complex.
Parallelism in the cubes of X preserves orientations of 1-cells, from which it
follows that every hyperplane is two-sided. If a hyperplane Ha were to self-
intersect, it would follows that some square has every edge glued to a, which
does not occur in the construction of X. If Ha directly self-osculates then it
follows that Ha is dual to two distinct edges incident at the same vertex; but
each hyperplane is dual to a unique edge. If Ha and Hb inter-osculate then
it follows that a and b both bound a square and do not bound a square, a
contradiction.

This shows that all subgroups of right-angled Artin groups are fundamental
groups of special cube complexes (by the Galois correspondence). The key
theorem is the following:

Theorem 42 (Haglund, Wise). [HW] If X is a special cube complex, then there
exists a graph N and a local isometry of cube complexes

ϕX : X # SN .

Corollary 43. The characteristic map lifts to an isometric embedding φ̃ : X̃ →
˜SH(X). In particular, it induces an injective homomorphism φ∗ : π1X ↪→ AH(X).

Some group theoretic facts about right-angled Artin groups are known, such
as they are linear [DJ], residually finite (for any non-trivial element g, there is
a homomorphism to a finite group such that g isn’t in the kernel), Hopfian (any
surjective homomorphism from the group to itself is an isomorphism) and so
on. These then give control over the fundamental group. Equally important is
the following:

Corollary 44. A group G is a subgroup of a right-angled Artin group if and
only if G is the fundamental group of a (not necessarily compact) special cube
complex.
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