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1 Introduction
This expository essay will discuss the basics of Bass-Serre theory of groups
acting on trees, with a view to proving the ’fundamental theorem’ of this field:
Suppose a group G acts on a tree X without inversion. Then the quotient space
Y = G/X is a graph of groups with fundamental group G. As the fundamental
group of a graph of groups is an amalgamated free product of a series of smaller
groups, this gives a lot of insight into the algebraic structure of the original
group G, including of course how it can be ’built up’ from smaller groups with
amalgamation.
All of the above terminology will be defined in due course, and this essay will in
general aim to be as self-contained as possible, though proofs will inevitably be
omitted for some technical results or because of length constraints. For ease of
understanding, sometimes remarks which aim to build intuition will appear in
place of an actual proof. The assumed knowledge will be anything that appears
in the undergraduate schedules for the Cambridge Mathematical Tripos. The
main reference is the text [1] (or rather a translation of it), written by a pioneer
of the theory and great giant of mathematics Jean-Pierre Serre.

2 Amalgamation
There are many ways of creating new groups from old ones. The most obvious
one is the direct product, where the combined groups don’t interact with each
other. Then there is the semi-direct product, where one of the groups acts on
the others, of which the direct product is a special case, and the wreath product
which is useful in the study of the symmetric groups. However, any introductory
course on algebraic topology should include the Seifert-Van Kampen theorem,
which roughly says that if I glue two ’nice enough’ spaces together, a loop in the
product space can be written as some combination of loops in each individual
component space. However, we would like loops in the intersection of the com-
ponents, along which they are glued, to be counted the same, since in the new
space that’s, well, the same. That’s what gluing means. This then motivated
the idea of amalgamation, which turns out to be quite a useful notion. This
idea will be pushed a little further in this section.
Formally, the result of amalgamation, called the amalgam, is defined as a direct
limit. A direct limit of groups {Gi} and a set homomorphisms Fij from Gito Gj

is a group G = lim−→Gi, with homomorphisms fi : Gi 7→ G such that fi ◦ f = fj
for all f ∈ Fij . Additionally, the following universal property is required: for
any other group H, given homomorphisms hi : Gi 7→ H with hj ◦ f = hi for all
f ∈ Fij , there is exactly one homomorphism h : G 7→ H such that hi = h ◦ fi.
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The uniqueness follows from playing with the universal property, and the ex-
istence can be made by taking presentations for the Gi, taking the union of
generators and quotient out by the relations within the Gi and also quotienting
out y−1f(x) for y ∈ Gj , x ∈ Gi such that there is some f with y = f(x).
Note that more generally, the ’glued together bits’ need not be isomorphic:
Given groups A,G1, G2 and homomorphisms fi : A → Gi, the direct limit is
called the amalgam G1 ∗A G2. On the other hand, given a group A, a family
of groups (Gi)i∈I and an injection fi : A → Gi. Taking a direct limit of this
family gives a sum of the Gi with A amalgamated.
Examples:

1. The infinite dihedral group D∞ ≡ Z/2Z ∗ Z/2Z. With Z/2Z ∗ Z/2Z
generated by x, y subject to x2 = 1 = y2, a = y, b = yx satisfy the
dihedral group relations a2 = 1, aba−1 = b−1.

2. For coprime integers n,m > 1 and the natural homomorphisms from
Z,Z/nZ∗ZZ/mZ is the trivial group.(Consider the image t in the amalgam
of 1 ∈ Z)

3. Taking A to be the trivial group in the last line before the examples, the
sum is denoted ∗Gi and called the free product. The free group Fn is n
distinct copies of Z amalgamated this way.

A good question would be which groups are amalgams (in a non-trivial way).
We will not have time to answer that in this essay, but that question is explored
in the reference text [1]. It is intimately connected with the possible actions of
the group on trees; the example given is that SL3(Z) is not an amalgam.
There is a structure theorem for amalgams which we will not have space to
prove, but for completeness sake they are stated here. From here on assume A
injects into Gi and consider the sum ∗AGi with A amalgamated.
For all i ∈ I choose a set Si of right coset representatives of A in Gi, with 1 ∈ Si.
Let i = (i1, i2, · · · in) be a sequence of elements of I such that im 6= im+1 for all
1 ≤ m ≤ n− 1.
A reduced word of type i is any sequence m = (a; s1, · · · sn) where a ∈ A, sj ∈
Sj\{1}. Denote by f, fi the canonical homomorphisms of A,Gi into G = ∗AGi.
Then the result is

Theorem 2.1. For all g ∈ G there is a unique sequence i and reduced word m
of that type such that

g = f(a)fi1(s1) · · · fin(sn)

2.1 HNN
An important result due to Higman, B.H. Neumann, and H. Neumann is that
for any group G and two distinct copies of a subgroup A ≤ G, there is a group
G′ containing a subgroup isomorphic to G such that the two copies of the group
A are conjugate in G′. Formally,

Proposition 2.2. Let A be a subgroup of a group G and θ : A→ G an injective
homomorphism. Then there is a group G′ containing G and an element s ∈ G′
such that θ(a) = sas−1 for all a ∈ A. Furthermore, if G is countable, finitely
generated, or torsion-free, then G′ can be made to have the same property.
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Proof. This proof, or something along these lines, is probably what the average
man on the street would come up with if you stopped them and demanded a
proof. Take the infinite cyclic group S generated by an element s, and take the
free product G1 = G ∗ S. In true caveman fashion, just make things conjugate
by quotienting out the right things. Let N be the normal subgroup generated
by the relations {sas−1θ(a)−1 a ∈ A}. Then G1/N is a group with the desired
property. This also makes it clear why G′ has the corresponding property,
e.g. for countability note that the free product contains only words of finite
length.

As an example, taking G = A to both be the trivial group, then H is trivial
and the semi-direct product with Z is just Z, so Z is the HNN extension of the
trivial group.
More proofs are always welcome in mathematics, and since HNN groups will
reappear later as amalgams it is worth giving a proof involving amalgams.

Proof. For each n ∈ Z let An = A,Gn = G. Let H be the group obtained from
amalgamating the Gn by means of the injections θ : An → Gn and the canonical
inclusion An → Gn. Let un be the canonical homomorphism Gn → Gn+1.

Putting these together induces an automorphism u : H → H. Now consider
G0. θ(a) ∈ G0 is precisely u(a) ∈ G1 in the amalgam H, so the restriction of u
to A is θ. Consider the semi-direct product G′ = H o S, where S is the infinite
cyclic group generated by an element s that acts on H by the automorphism u.
Then G′ is the desired group and s the required element.

While the groups constructed in the two proofs look very different, exploiting
the universal property of the free product with the natural inclusions of G,S
into G′ in the second proof gives a unique homomorphism from the free product
into G′. One can then check that the kernel is normal subgroup given in the
first proof. G′ is sometimes called the group derived from (A,G, θ) by the HNN
construction. There is quite a surprising consequence of this construction:

Corollary 2.3. Every group G can be embedded into a group K such that any
two elements in K of the same order are conjugate in K.

Proof. Given a group G, repeatedly use the HNN construction to make succes-
sive pairs of elements conjugate to each other in some larger group. Passing to
direct limits, this gives a group E(G) such that any two elements of G of the
same order are conjugate in E(G). Repeating this to get E(E(G)), E(E(E(G)))
and so on and taking a direct limit of these groups, the direct limit is the desired
group K.

In particular, starting with a torsion-free group like Z gives a group K where
any two non-identity elements are conjugate, a ’very non-abelian’ group in some
sense. This also gives an overkill solution to ’find an infinite simple group’, since
if K is a non-trivial normal subgroup then every element is a conjugate of every
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non-identity element of K.
More importantly, this illustrates the power of ’just do it’, in the same vein
just quotienting out until we get what is needed as the first proof of the HNN
construction, of just going along as far as you can in trying to construct a proof
or an object with some property. Imagine if you had tried to write down the
group above directly...

3 Graphs and Trees

3.1 Graphs
Combinatorial graphs are objects that many are familiar with, perhaps even
from their maths olympiad days. Hence, we will not dwell too much on the for-
mal definition. Briefly, a graph consists of a set of vertices V , and a set of edges
E. For our purposes, graphs will be oriented graphs, with every edge having a
corresponding reversed edge, i.e. a second edge with the arrow pointing in the
opposite direction. All graphs considered will have a map e 7→ ē, sending each
edge to its reverse, with ¯̄e = e. The set {e, ē} will be called a geometric edge.
Each edge e will also have associated to it the originating vertex o(e) and the
terminating vertex t(e) in the natural way. Note that these need not be dis-
tinct, unlike in certain combinatorial settings. These newly defined graphs can
be visualized by drawing graphs as one normally would with the understanding
that each edge actually corresponds to a pair of directed edges.
The notions of path, cycle, tree and so on are defined as usual, as long as the
visualization is a path, cycle or tree in the usual sense. The length of a path c
will be denoted l(c) A graph with no cycles of length ≤ 2 is known as a com-
binatorial graph. A cycle of length 1 is called a loop. By choosing exactly one
of e, ē for all edges, one can give the graph an orientation E+. The edges not
chosen form an opposite orientation known as E−. A morphism from a graph
(V,E) to a graph (V ′;E′) is a mapping α : V → V ′ which takes edges to edges
and the origin and terminus of α(e) are, respectively, the images of the origin
and the terminus of e. Graphs are isomorphic with the usual definition.

Definition. For any group G and subset S of G, the Cayley graph Γ(G,S) is the
graph with vertices labelled as elements of G, and an orientation E+ = G× S.
Edges eg,s are defined by o(g, s) = g, t(g, s) = gs for all g ∈ G, s ∈ S.

The Cayley graph is a fundamental object in algebraic topology and geo-
metric group theory, so it may already be familiar to some readers. The first
proposition we have is

Proposition 3.1. Let Γ = Γ(G,S) be a Cayley graph. Then:

i The subgroup < S > gives the connected component of Γ at the identity,
and the left cosets of < S > are in bijection with the connected components
of Γ. From this it is immediate that Γ(G,S) is connected if and only if
G =< S >.

ii Γ contains a loop if and only if 1 ∈ S.

iii Γ is a combinatorial graph if and only if S ∩ S−1 = ∅.
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Proof. (ii),(iii) follow easily from the definition of the edge set of the Cayley
graph. For (i), note that a path from vertices g1 to g2 exists if and only if there
exists a sequence {si}ni=1 ∈ S ∪ S−1 such that g1 = g2s1s2 · · · sn. Hence g1, g2

are in the same component of Γ if and only if they are in the same left coset of
< S >.

Given a graph Γ and a set of vertices V0, denote by Γ−V0 the subgraph with
vertex set V \V0 and edge set all of the edges of Γ with the ones where either
origin or terminus belongs to V0.

3.2 Trees
Call a path without backtracking a geodesic. Recall the following facts about
trees:

1. A tree on n vertices has exactly n − 1 geometric edges, and at least two
leaves.

2. Between any two vertices P,Q there is a unique geodesic between P and
Q.

Defining d(P,Q) as the number of edges along this geodesic makes the tree a
metric space. Picking a vertex P , for any other vertex Q there is a unique,
finite path homeomorphic to [0, n] between them, so the obvious ’straight line’
homotopy x 7→ tx shows that the path between P and Q is contractible. Note
that the homotopy from a point Q′ on the path is compatible with that from
Q, which combined with the fact that a tree is a union of its finite subtrees, or
in this case, the paths from P to Q for Q a vertex of the tree, shows that any
tree is contractible.

3.3 Subtrees of graphs
Proposition 3.2. Let P be a leaf of a non-empty graph Γ. Then

i Γ is connected if and only if Γ− P is connected.

ii Every cycle of Γ is contained in Γ− P

iii Γ is a tree if and only if Γ− P is a tree

iv If Γ is connected, a maximal tree Λ contains all its vertices.

The first three are obvious. The last is basically if Λ doesn’t contain some
vertex Q, then the connectedness gives a path from Λ to Q and hence a bigger
tree. The existence of a maximal tree is a Zorny issue: order the subtrees by
inclusion, then given a chain, an upper bound is the union of all the elements of
the chain (since the union of nested trees is a tree), so the hypothesis of Zorn’s
lemma is satisfied. By staring hard enough at (iv), readers should be able to
convince themselves that the following is true:

Proposition 3.3. Let Γ be a connected, non-empty graph. Then it has the
homotopy type of a bouquet of circles and is a tree if and only if it is contractible.
In other words, Γ is a tree if and only if Γ/Λ is a tree.
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We will not give a formal proof, but thinking about a graph, after taking a
maximal tree and treating it as/contracting it to a point, the rest of the edges
are just loops. The graph is a tree if and only if there are no edges outside of
the maximal tree.

4 Groups acting on trees
Having the title groups acting on trees, started by discussing groups and then
moving on to discuss trees, we will now discuss groups acting on trees, to no one’s
surprise at all. As mentioned in the introduction, the reason this is interesting
is that the geometric properties of the action give insight into the algebraic
properties of the group.

Definition. A group G acts on a graph Γ if it sends edges to edges and vertices
to vertices in the sensible way, i.e. the images of endpoints are the endpoints of
images. Say that a group acts without inversion if, for any g ∈ G, e ∈ E, ge 6= ē.

Only groups acting without inversion will be considered here for the following
reason: a quotient graph of Γ can be defined by taking the vertices to be the
set of G-orbits of vertices of Γ and the edges to be the G-orbits of edges. This
quotient graph is a graph only if there are no inversions, so that the edges e, ē
are actually distinct. More is true:

Lemma 4.1. Let G act without inversions on a connected graph X. Every
subtree T ′ of G\X lifts to a subtree of X.

Proof. Let T0 be a maximal subtree in the set of all subtrees of X which project
injectively into T ′ (which exists by reasoning analogous to the previous Zorn’s
lemma argument). Let T ′0 be the image of T0 in T ′. By definition, T ′0 ⊂ T ′.
Suppose that T ′0 6= T ′. Then there is some edge y′ ∈ T ′\T ′0. Connectedness of
T ′ implies that there is a path back to T0, so WLOG assume o(y′) is a vertex
of T ′0. If t(y′) ∈ T ′0, the path from o(y′) to t(y′) in T ′0 combined with y′ gives a
cycle in T ′, so t(y′) 6∈ T ′0. Let y be a lift of y′. Since gy is also a lift of y′, WLOG
assume that o(y) is in T0. Then adjoining P = t(y) gives a tree T1 containing
T0 as a subtree, and T1 → T ′ is also injective, contradicting maximality, so
T ′ = T ′0.

A tree of representatives of X mod G is any subtree T of X which is a lift
of a maximal tree from the quotient graph. Note that this need not be unique.

Definition. If Γ has a subgraph ∆ ' G\Λ, the quotient graph from the action
of G, then ∆ is called a fundamental domain for Γ mod G

Fundamental domains need not exist: consider Z/3 acting on the cycle of
length 9 C9. The quotient graph is a cycle of length 3, but this isn’t a subgraph
of C9. However, if it acts on a snowflake with 9 branches, then a fundamental
domain does exist: pick 3 consecutive branches. This result generalises to:

Proposition 4.2. Let G be a group acting on a tree T . A fundamental domain
for T mod G exists if and only if G\T is a tree.
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Proof. If G\T is a tree the previous lemma gives a lift to T , so there is a
fundamental domain. Conversely, if a fundamental domain exists, T has no
cycles, so G\T is isomorphic to a subgraph of a tree, which is also a tree, so
G\T must be a tree.

Define a segment to be two vertices with a single geometric edge between

them, such as . This is the simplest fundamental domain that can be
meaningfully considered. It turns out that properties of the graph correspond
to algebraic properties of the group acting on the graph in a sense that will be
made precise by the next two lemmas. Unless otherwise specified, the context
will be the following: a group G acts on a graph X with fundamental domain
a segment T , labelled as in the previous diagram. GP , GQ, Gy = Gȳ are the
stabilisers of the vertices and edges of T .

Lemma 4.3. X is connected if and only if G is generated by GP ∪GQ.

Proof. Let X ′ be the connected component of X containing the segment T . Let
G′ = {g ∈ G : gX ′ = X ′} be the stabiliser of X ′, and let G′′ be the subgroup
of G generated by GP ∪ GQ. If h ∈ GP ∪ GQ, it fixes at least one vertex so
hT is in the same connected component as T , i.e. hT ⊂ X ′. However, the
connected component of hT is hX ′, so hX ′ = X ′, i.e. h ∈ G′, so GP ∪GQ ⊂ G′,
so G′′ ⊂ G′. The key insight is now that X is the disjoint union of G′′T and
(G\G′′)T . If not, then there would be x ∈ G′′, y ∈ G\G′′ with xT = yT , or
equivalently y−1xT = T . Either y−1xP = P , in which case y−1x, and hence y,
would be in G′′, or y−1xP = Q and y−1xQ = P , which is forbidden since this
would mean G acts with inversion on the graph. In either case, a contradiction
is reached. Since X ′ ⊂ G′′T , this implies G′ ⊂ G′′, so G′′ = G′. The graph is
connected if and only if X = X ′, i.e. G = G′ = G′′ (otherwise g ∈ G\G′ would
give gX ′ a separate connected component).

Lemma 4.4. X contains a cycle if and only if GP ∗Gy
GQ → G is not injective.

Proof. A cycle is a sequence of edge w0, w1, · · ·wn s without backtracking such
that o(w0) = t(wn). Each wi can be written in the form hiyi, where yi ∈
y, ȳ, hi ∈ G. Projecting down to the quotient T , ȳi = yi−1 for 1 ≤ i ≤ n. Let
Pi = o(yi) = t(yi−1). Now,

hiPi = hio(yi) = o(hiyi) = t(hi−1yi−1) = hi−1t(yi−1) = hi−1Pi

so hi = hi−1gi for some gi ∈ GPi
. This makes sense geometrically since moving

along the cycle edge by edge, one end of the edge is fixed every time, so it is
a ’shift’ by an element of the corresponding stabiliser. Furthermore, hi 6∈ Gy

since otherwise,

w̄i = hiyi = hi−1giyi = hi−1yi = hi−1yi−1 = wi−1

contradicting the no backtracking condition. Being a cycle is equivalent to
t(yn) = P0, or alternatively taking indices modulo n that h0P0 = hnP0 =
h0g1 · · · gnP0, i.e. g1g2 · · · gn ∈ GP0 . Then there exists g0 ∈ GP0 such that
g0 · · · gn = 1. Then X contains a cycle if and only if such a sequence of Pi

whose projections alternate between P and Q and a sequence of gi ∈ GPi
\Gy

exists. There are no cancellations precisely between the gi because no elements
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are in the intersection of the vertex stabilisers, i.e. the edge stabilisers, so the
statement g0 · · · gn = 1 is equivalent to the homomorphism not being injective.

These two lemmas can then be put together to deduce

Theorem 4.5. X is a tree if and only if the homomorphism GP ∗Gy
GQ → G

induced by the natural inclusions of the vertex stabilisers into G is an isomor-
phism.

since the defining property of a tree is that it is connected and has no cycles.
Being connected is equivalent to the homomorphism being surjective, and having
no cycles is equivalent to the homomorphism being injective. Conversely, every
amalgam acts in this way:

Theorem 4.6. Let G = G1 ∗A G2 be an amalgam of two groups. Then there is
a unique tree up to isomorphism on which G acts with fundamental domain a
segment T , so that the stabilisers are GP = G1, GQ = G2, Gy = A.

Proof. If you sit down and try and come up with such a graph, it becomes quite
clear what the graph is and why it is unique up to isomorphism. Starting with
a segment T , letting G act on it gives that the orbit of P is in bijection with
the left cosets of G1. Similar reasoning for Q and y then gives that the graph
must be isomorphic to the graph Γ with:

V (Γ) = G/G1

⊔
G/G2, E(Γ) = G/A

⊔
G/A

with o(gA) = gG1, t(gA) = gG2. The obvious action of G gives the statement
about stabilisers. That Γ is a tree follows from the previous theorem.

This establishes an equivalence between a group G being amalgam of two
groups and G acting on a tree with a segment as fundamental domain. The
more general case, with amalgams of more than two groups, is similar and is
the main structure theorem of this essay. However, it is analogous, and readers
should note the similarities in theorem statements and proof ideas.
Having said that, we now prove a generalisation of X connected implies G
generated by vertex stabilisers that will be needed in the more general case.
We’re on the topic anyway so why not?

Lemma 4.7. Let G be a group acting on a connected graph X, and let T be a
tree of representatives of X mod G. Let Y be a subgraph of X containing T
such that every edge of Y has an extremity in T and G ·Y = X. For each edge e
of Y with origin in T let ge be an element of G such that get(e) ∈ V (T ). Then
the group H generated by the vertex stabilisers GP , P ∈ V (T ) and the ge is G.

Note that the assumption of being a tree of representatives only guarantees
G · Y contains all the vertices, but not necessarily all the edges, so G · Y = X
isn’t redundant. It should also be obvious that this is a generalisation since the
ge are all elements of the vertex stabilisers in the case of a segment.

Proof. It suffices to show that H · V (T ) = V (X). Since H contains the ge,
the hypothesis that all the terminal vertices can be translated to T implies
that V (Y ) ⊂ H · V (T ). It now suffices to show that H · Y = X, and since X
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is connected this reduces to showing that any edge e with origin in H · Y is
contained in H · Y . By translating with an element of H if necessary, assume
P = o(e) ∈ V (T ). Now the assumption G · Y = X implies there is g ∈ G such
that ge ∈ Y and it suffices to show that g ∈ H.
Since ge ∈ Y , either o(ge) or t(ge) is a vertex of T . In the first case, P and gP are
two vertices of T congruent mod G so they are equal and g ∈ GP . In the second
case, y = ge has its origin in T , so there is some gy such that gyt(y) ∈ V (T )
and as in the first case, P must coincide with gyt(y) = gyo(ge) = gygP so
g ∈ g−1

y GP ⊂ H.

4.1 Groups acting freely on trees
In this slight detour more examples of how the geometric properties of a group
action can be used to deduce algebraic facts about the group are given. It should
provide some more practice for when this is done again in the future, but more
importantly is interesting maths, which is good (in my book at least).

Proposition 4.8. Let X = Γ(G,S) be the Cayley graph defined by a group G
and a subset S. Then X is a tree if and only if G is a free group with basis S

Proof. If G is a free group with basis S, then every element can be written as
a reduced word g = se11 · · · senn with ei = ±1. Let Gn denoted the set of words
of length at most n, then this gives a map Gn → Gn−1 by just chopping off the
last symbol. It is easy to see that X is built up successively by the Gn, and by
the result on Cayley graphs there is no loop since 1 6∈ S.
Conversely supposeX is a tree. By the same result on Cayley graphs S generates
G and S∩S−1 = ∅. Suppose for a contradiction that a reduced word of positive
length in F (S) (the free group on was S as basis) is the identity in G. Pick
such a reduced word g = se11 · · · senn of minimal length. Let Pi be the vertex
associated to se11 · · · s

ei
i . The hypotheses imply n ≥ 3, and minimality implies

that any consecutive vertices Pi, Pi+1 are distinct. Then the Pi form a cycle,
contradicting the assumption that X is a tree.

Say that a group acts freely on a graph if, in addition to acting without
inversions, each vertex is fixed only by the identity. For example, in the propo-
sition above G acts freely on X, which shows that every free group acts freely
on some tree. A converse is easy to see: if G acts freely on a tree then it is a free
group. It suffices to check that any non-trivial reduced word is not the identity,
and this is true since if not, one would generate a cycle and get a contradiction
as before. There are some details to check, which we won’t since there is a
stronger result that we prove instead.

Theorem 4.9. Let a group G act freely on a tree X, T be a tree of representa-
tives of X mod G and E+ be an orientation preserved by G.

i Let S be the set of non-identity elements in G for which there is an edge
e ∈ E+ with origin in T and terminus in gT . Then S is a basis for G.

ii If X∗ = G\X has a finite number of vertices v and X∗ has a geometric
edges, then |S| − 1 = a− s. (Note this means |E(X∗)| = 2a.)
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Proof. (i): G acts freely, and T injects into X∗ naturally, so g 7→ gT is a
bijection of G onto the set of (pairwise disjoint) translates of T . Let X ′ be the
graph formed from X by shrinking each gT to a single vertex denoted (gT ). As
proved in a previous proposition shrinking trees to vertices leaves a graph which
is also a tree, so X ′ is a tree.
Then (gT ) 7→ g can be thought of as a bijection α : V (X ′)→ V (Γ(G,S)) since
the vertices of the Cayley graph V (Γ(G,S)) are in bijection with elements of G.
At this point a fairly natural thing to try is to extend α to a graph isomorphism.
Give X ′ the orientation E′+, the orientation induced from E+ (well-defined since
the edges of X ′ are a subset of the edges of X). Now define α : E′+ → G × S
to give an orientation on the Cayley graph. Let e be an edge of X ′. Since the
trees have all been contracted to points, the origin and terminus of e are some
vertices (gT ), (g′T ) respectively. Hence s = g−1g′ ∈ S, so set α(e) = (g, s). By
definition of S, this is surjective. Injectivity follows from X ′ is a tree, so there
won’t be two edges between the same two vertices (gT ), (g′T ), and that α is
injective on vertices.
This shows α is indeed a graph isomorphism, and hence X ′ is a tree implies, by
the previous result, that G is free with basis S.
(ii): LetW be the set of edges where the origin but not terminus is a vertex of T .
By (i) this is in bijection with the basis S. But after deleting the |S| geometric
edges of X∗ which are images of edges of W , we are left with precisely the
geometric edges coming from the injection T → X∗. This is a maximal tree in
X∗ with s vertices, hence a− |S| = s− 1.

This establishes that groups are free if and only if they always act freely on
trees and there is some tree on which they act freely. Immediately this shows
that a subgroup of a free group is free, since the action of the free group on
its Cayley graph induces a free action of its subgroups on that same Cayley
graph. In fact, one can obtain an analogue of the Riemann-Hurwitz formula
from algebraic topology for free groups.
Suppose S1, S2 are free bases for the same group G. By abelianising, i.e. quo-
tient out all the commutators, this reduces to a question about Z-modules,
where it is much more easily seen to be true that |S1| = |S2|. Then we can
write rG = |S1| without worrying about having committed a cardinal sin of
mathematics. Moreover,

Corollary 4.10. Let G be a free group and H a subgroup of finite index n.
Then rH − 1 = n(rG − 1).

Proof. Let G1 = G, G2 = H, and let Γ be the Cayley graph of G for some free
basis S, on which G acts freely. Let Γi = Gi\Γ, si = |V (Γi)|, and ai = |E(Γi)|.
This gives s2 = ns1, a2 = na1, s1 = 1. Then rearrange the formula in (ii) of the
theorem applied to the Gi.

In particular, if rG = 2 gives the possibility of having free subgroups of
all countable ranks > 1, and in fact it does. For example, in the free group
F2 =< a, b > the family {anba−n}n∈N is a basis for a free group on countably
infinitely many generators. This also shows that the same is true for the free
groups of rank n > 1, since they all contain F2 as a subgroup. Groups can be
weird.
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5 Trees of groups
In this section a generalization of previous results will be given. In particular,
amalgamations of more groups, not necessarily all sharing a common subgroup,
will be considered.

Definition. A graph of groups (G, T ) consists of a graph T and a set of groups
G such that there is a group GP for every vertex P of T , a group Ge = Gē

for every edge e, and an injective homomorphism sending a ∈ Ge to its image
ae ∈ Gt(e).

If T is a tree, then this is known as a tree of groups. Let GT = lim−→(G, T )
denote the direct limit of the groups, also known as the amalgam of the vertex
groups GP along the edge groups Ge. For example, in the case of T a segment
as before, then the direct limit is just the amalgam GP ∗Gy GQ. This also allows
us to build up the direct limit of a tree of groups by adding in edges one at a
time: if a vertex v is a leaf of a tree T , taking T ′ to be T\v, GT ′ = lim−→(G′, T ′)
where G′ is the restriction of G to T ′ and e, ē to be the edge connecting v to
T ′, we see that GT = GT ′ ∗Ge

Gv.
Since the homomorphisms GP → GT and Ge → GT are injective, from hereon
the groups will be identified with their images in GT . By taking direct limits, it
suffices to check this for finite trees, where this follows by induction (c.f. 4.5).
Just as every segment is the fundamental domain of an amalgam of two groups,
every tree of groups is a fundamental domain of a larger graph with the groups
involved in the amalgamation as stabilisers of the respective vertices:

Theorem 5.1. Let (G, T ) be a tree of groups. There is a graph X containing
T and an action of GT on X, unique up to isomorphism, such that T is a
fundamental domain for X mod GT and for all P ∈ V (T ) (resp. e ∈ E(T )),
the stabiliser of P (resp. e) in GT is GP (resp. Gy). Moreover, X is a tree,
which will be called the graph associated with (G, T ).

Proof. The construction of X follows that given in the previous theorem for a
segment: take V (X) to be the disjoint union of GT /GP over all vertices P of T ,
do the same for every edge of T , and the assertions follow immediately as in the
previous theorem, apart from X being a tree. Note that everything commutes
with taking direct limits, so T can be taken to be the direct limit of its finite
subtrees, and we consider the corresponding GT , X associated with these finite
subtrees. Hence we are reduced to the finite case, where we argue by induction
on n = |V (T )|.
n = 1 is trivial since X = T , so assume n > 1. Then removing a leaf v and the
corresponding edges e, ē to get a subtree T ′, we get that GT = GT ′ ∗Ge

Gv. Let
X ′ = GT ′ ·T ′. This is a subgraph of X, which is easily checked to be associated
to (G,T ′). By the induction hypothesis X ′ is a tree. Note that g1X

′ = g2X
′

if and only if they are in the same left coset of GT ′ and are disjoint otherwise.
Let X̃ be the graph derived from X by shrinking each tree gX ′ to a point. GT

acts on X̃ with fundamental domain the segment T/T ′= . Then since
GT = GT ′ ∗Ge

Gv, X̃ is also a tree by 4.5. Hence X is a tree.

A converse is also true: let a group G act on a graph X with fundamental
domain a tree T . Let (G,T ) be the tree of groups where the group associated

11



to each edge or vertex is the stabiliser in G of that edge of vertex. The injective
map from the edge group to the vertex group is just the natural inclusion map.
Let GT = lim−→(G, T ). The inclusion maps GP → G extend to a homomorphism
GT → G which is surjective if and only if X is connected by 4.3.
Let X̃ denote the tree associated to (G, T ). Sending T ⊂ X̃ to T ⊂ X by the
identity map extends uniquely to a morphism X̃ → X which commutes with
the map GT → G.

Theorem 5.2. With the above hypotheses and notations, TFAE:

i X is a tree

ii X̃ → X is an isomorphism

iii GT → G is an isomorphism

Proof. (iii) =⇒ (ii) follows from the previous theorem. (ii) =⇒ (i) since X̃ is
a tree
(ii) =⇒ (iii): let P be a vertex of T and let (GT )P (resp. GP ) be the
corresponding stabiliser of P in GT (resp in G). By construction of the map,
in particular requiring the action to be equivariant with respect to the map,
GT → G induces an isomorphism from (GT )P to GP . On the other hand, if
X̃ → X is a bijection, the kernel H of GT → G is contained in (GT )P , so H
must be trivial and the map is injective. GT → G is surjective, since X̃, being
a tree, is connected, and therefore so is X, so it must be an isomorphism.
(i) =⇒ (ii): GT · T = X̃ and G · T = X implies X̃ → X is surjective
(by equivariance). On the other hand, the homomorphism GT → G induces
isomorphisms between the stabilisers of the corresponding vertices (and edges)
of X̃ and X. Hence f : X̃ → X is locally injective, i.e. injective on a set of
edges with a common origin. We will need a lemma to finish off here, and the
reader should make a mental note that this will reappear in the section on the
Structure Theorem.

Lemma 5.3. If X̃ is connected, X is a tree, and f : X̃ → X is locally injective,
then f is injective.

Proof. Since X̃ is connected, it suffices to show that for any injective path c,
f ◦ c is also injective. X is a tree, so injectivity can only fail by backtracking.
But this never happens since c is injective and f is locally injective.

With this, f is injective and surjective, so is an isomorphism.

5.1 The Fundamental Group
Having dealt with the case where the quotient graph is a tree, the more general
case will require a generalisation of amalgams that is known as the fundamental
group of a graph of groups.
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The group F (G, Y )

For a graph of groups (G, Y ) with Y connected and non-empty, the group
F (G, Y ) is the group generated by the groups GP and elements e for every
edge, subject to the relations

ē = e−1, eaee−1 = aē

if e is an edge and a ∈ Ge.
Given a path in Y whose origin is P0, its edges will be denoted e1, e2 · · · en with
Pi = o(ei+1) = t(ei).

Definition. A word of type c in F (G, Y ) is a pair (c, µ) where µ = (r0, · · · , rn)
is a sequence of elements ri ∈ GPi . The element |c, µ| = r0e1r1 · · · ynrn of
F (G, Y ) is said to be associated to the word (c, µ).

At this point the fundamental group can be defined in one of two ways.
Either:

Definition. Let P0 be a vertex of Y . Let π1(G, Y, P0) be the set of elements of
F (G, Y ) of the form |c, µ| where c is a path starting and ending at P0. This is
easily seen to be a subgroup of F (G, Y ), called the fundamental group of (G, Y )
at P0.

If the trivial group is associated to each vertex, the corresponding funda-
mental group is the fundamental group in the usual sense of the term of the
graph based at P0. In general, the homomorphism from each GP to the trivial
group {1} induces a surjective homomorphism π1(G, Y, P0)→ π1(Y, P0). Alter-
natively, the group can be defined as:

Definition. Let T be a maximal tree of Y . The fundamental group π1(G, Y, T )
of (G, Y ) at T is defined to be the quotient of F (G, Y ) by the normal subgroup
generated by the elements e corresponding to edges of T . Letting ge denote the
image of an edge e in π1, π1(G, Y, T ) is the group generated by the GP and
ge subject to ē = e−1, gea

eg−1
e = aēif e is an edge and a ∈ Ge, and ge = 1 if

e ∈ E(T ).

For example, in the case of a segment T = , both definitions give
the amalgam π1 = GP ∗Gy

GQ as the fundamental group. It would be very
strange to give two definitions of the same thing and then for them to give
different results wouldn’t it? However, some care is needed. Relative to a
maximal tree, then it really is GP ∗GyGQ in the obvious way. Relative to P0 = P
however, one instead obtains sequences of the form p0(yq0y

−1)p1(yq1y
−1) . . . for

pi ∈ Gi, qi ∈ GQ, i.e. the elements of GQ are always conjugated by y (or y−1

depending on definition). Note however, that one can’t go from π1(G, Y, P0) to
π1(G, Y, T ) by quotienting out the normal subgroup generated by the y since y
alone isn’t even an element of π1(G, Y, P0).

Proposition 5.4. Let (G, Y ) be a graph of groups, P0 ∈ V (Y ) and T a maximal
tree. The canonical projection p : F (G, Y ) → π1(G, Y, T ) induces an isomor-
phism from π1(G, Y, P0) to π1(G, Y, T )
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Proof. For P ∈ V (Y ) let cP be the geodesic in T joining P0 to P with edges
e1, e2 · · · en in that order. Let γP = e1e2 · · · en ∈ F (G, Y ). Let x′ = γPxγ

−1
P for

x ∈ GP and e′ = γo(e)eγ
−1
t(e) for e ∈ E(Y ). Note that if e ∈ T , the geodesic to

either o(e) or to t(e) must pass through e or ē otherwise there would be a cycle,
so for e ∈ T, e′ = 1. Note also that x′, e′ ∈ π1(G, Y, P0) since for the edges e′,
the added elements close up a cycle passing through P0.
(A motivation for this is the isomorphism between the two groups in the case
of a segment above, i.e. that conjugating things suitably worked before, so why
not now?).
Define f : π1(G, Y, T ) → π1(G, Y, P0) by f(x) = x′, f(y) = y′. We show this is
a homomorphism. It is easy to check that f(x1x2) = f(x1)f(x2) for x1, x2 in
the same vertex group and f(e1e2) = f(e1)f(e2) for consecutive edges e1, e2, so
all that is left is to make sure that the images obey the right relations. For all
a ∈ Ge

e′(ae)′e′−1 = γo(e)eγ
−1
t(e)γt(e)a

eγ−1
t(e)γt(e)e

−1γ−1
o(e)

= γo(e)a
ēγ−1

o(e)

= (aē)′

Since(γP ) is a path in T , p(γP ) = 1 so p strips away the added elements to
give p ◦ f is the identity on π1(G, Y, T ). Let c be a closed path with origin
P0, edges e1, e2 · · · en and vertices Pi = o(ei+1) = t(ei), µ = (r0, r1 · · · rn).
Let r0y1r1y2 · · · ynrn be the word associated to (c, µ). Let r′i = γPiriγ

−1
Pi

,
e′i = γPi

eiγ
−1
Pi+1. Note that Pn+1 = P0, and γP0

= 1, so r′0y′1r′1y′2 · · · y′nr′n =
r0y1r1y2 · · · ynrn. Hence f ◦ p is the identity on π1(G, Y, P0).

Remarks:

1. This shows that the fundamental group is well defined, and like the fun-
damental group of a topological space, is independent of either base point
P0 or the maximal tree T , which is a relief.

2. Let R be the normal subgroup of π1 generated by the vertex groups GP .
Then π1/R is the fundamental group in the sense of topological spaces of
the graph Y relative to the maximal tree T (this can also be seen to be
reducing all the vertex groups to the trivial group). It is a free group with
basis ge for y ∈ E+\T for some orientation E+.

Examples:

1. If Y is a tree, π1(G, Y, Y ) = lim−→(G, Y ), generalising the case of a segment

2. Fundamental groups are in general amalgams, but although some groups
aren’t amalgams in non-trivial ways any group G can still be made a
fundamental group of some graph of groups by taking a segment, and
giving one vertex the group G and the other vertex the trivial group.

3. Take Y to be a loop . Let A = Gy. There are then two in-
jections, along y, ȳ, from A to GP . Since every path is a closed path,
the fundamental group is just F (G, Y ), generated by GP and an element
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g = gy such that gayg−1 = aȳ for all a ∈ A. Now with θ as the map
a 7→ aȳ, this shows that π1(G, Y, P ) is the group derived from (A,GP , θ)
by the HNN construction. The proof then shows that π1 is the semi-direct
product of < g > and the normal subgroup generated by the conjugates
Gn = gnGP g

−n of GP as n ranges over the integers.

5.2 Reduced Words
Let (c, µ) be a word of type c, where c is a path with origin P0 and edges
e1, · · · en, µ = (r0, r1, · · · rn). Denote by Ge

e the image of Ge in Gt(e)

Definition. A word (c, µ) is said to be reduced if it satisfies the following
condition: if n = 0, r0 6= 1; if n ≥ 1, ri 6∈ Gei

ei for each index i such that
yi+1 = ȳi.

In particular, every word of type a path with length ≥ 1 without backtrack-
ing is reduced.

Theorem 5.5. If (c, µ) is a reduced word, the associate element |c, µ| of F (G, Y )
is 6= 1.

Before the proof of this, the corollary below is given in preparation as it will
be needed for the proof. Don’t worry, maths isn’t broken. It’s just that the
main proof relies on proving special cases and using the corollary for those cases
to deduce the general case.

Corollary 5.6. i The homomorphisms GP → F (G, Y ) are injective

ii If (c, µ) is reduced and l(c) ≥ 1, then |c, µ| 6∈ GP0 .

iii If T is a maximal subtree and (c, µ) has the type of a cycle, the image of
|c, µ| in π1(G, Y, T ) is non-trivial.

Proof. (i) is just the statement of the theorem with l(c) = 0
For (ii), suppose not. Then define µ′ = (|c, µ|−1r0, r1 · · · rn), so that |c, µ′| = 1
contradicting the theorem.
For (iii), note |c, µ| ∈ π1(G, Y, P0), so is non-trivial there, and there is an iso-
morphism from F (G, Y ) to π1(G, Y, T ) which induces an isomorphism from
π1(G, Y, P0) to π1(G, Y, T ).

The proof is on the long side and rather technical so only a very brief sketch
of the ideas is given below.

Proof. (very sketchy) For any graph Y , let Y ′ be a connected, non-empty sub-
graph of Y . This induces a graph Y/Y ′ by shrinking Y ′ to a single vertex.
Giving this vertex the group F (G|Y ′ , Y ′) gives a new graph of groups (H,W ).
F (G, Y ) can be seen to be isomorphic to F (H,W ) by realising that this amounts
to saying you can build up loops and words bit by bit, first inside Y ′ then adding
in the stuff from outside. Moreover, the map is induced by the shrinking in a
fairly natural way.
Assuming that the theorem is true for (H,W ), one can then show that if |c, µ|
is reduced in (G, Y ) then the |c′, µ′| of (H,W ) is also reduced. This then shows
that the theorem is true for (G, Y ). Applying this reduction then reduces us to
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the case of a segment and a loop.

For a segment and an element of the form r0y
e1r1 · · · yenrn with

ei = ±1, ei+1 = −ei, ri ∈ GPei
\Gyei

y . There is a canonical homomorphism from
F (G, Y ) to π1(G, Y, Y ) = GP1

∗GP−1
sending the word to r0r1 · · · rn. Amalgams

are often useful for showing that groups are non-trivial, due to the structure
theorem for amalgams that proves elements are non-trivial. Length constraints
mean that result couldn’t be proved, but it is used here to show that the image
is non-trivial. This should feel believable without a formal proof.
By induction the theorem is true for finite trees, and by taking direct limits true
for all trees.

Previously, we saw that the fundamental group of a loop is an HNN
group, and if R is the normal subgroup generated by G0. Setting Gn =
ynG0y

−n, we see that yayy−1 = aȳ extends to ynayy−n = yn−1aȳy1−n so
Gn−1 has a subgroup isomorphic to A that is also a subgroup of Gn. (Recall
the diagram below from when HNN groups were introduced). Amalgamating

along these gives R, since the only way to ’conjugate out of G0 is to use y to
get to the conjugates Gn. Elements are once again of the form r0y

e1r1 · · · yenrn
with ei = ±1, ei+1 = −ei, ri 6∈ Ayei if ei+1 = −ei.
If

∑
ei 6= 0 then the word |c, µ| isn’t in R so is non-trivial, but really it’s be-

cause if a path loops around a non-zero number of times it obviously can’t be
the identity. Assuming

∑
ei = 0, set

di = e1 + · · · ei, si = ydiriy
−di

allows us to rewrite |c, µ| as s0s1 · · · sn with si ∈ Gdi with d0 = 0 = dn. Note
that di+1 − di = ei+1, and the condition that ei+1 = −ei is equivalent to
di+1 = di−1, so the condition ri 6∈ Ayei if ei+1 = −ei translates into

si 6∈ ydiAyei y−di

Now consider the path/tree whose vertices bijection with Z and has edges be-
tween consecutive numbers. Let (K,T ) be the tree of groups associating Gn to

the vertex n. R is the fundamental group, and applying the corollary to the
word s0s1 · · · sn in R gives the result as this is the word associated to a closed
path in T .
This now allows us to prove the theorem for all finite graphs, and taking direct
limits gives the general result.

6 Structure of groups acting on trees
Many parallels have been drawn in the previous section between the fundamen-
tal group of a graph of groups and that of a topological space. Geometrically, if
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a group G acts on a simply-connected Hausdorff topological space X by home-
omorphisms freely and properly discontinuously, then π1(G\X, [x]) ' G. This
gives an equivalence between the fundamental group and an action of this group
on the universal cover. This section will develop the analogous results for fun-
damental groups of graphs of groups.

6.1 Universal Coverings
Let (G, Y ) be a graph of groups with Y connected and non-empty, T a maximal
tree of Y and E+ an orientation of Y . Let 1e be the indicator function for an
edge e of whether it is in the orientation, and let |e| be the edge among e, ē
which is in E+. By analogy with the case for general topological spaces, we seek
a graph X̃ = X̃(G, Y, T ) such that

• There is an action of π = π1(G, Y, T ) on X̃

• There is a morphism p : X̃ → Y inducing an isomorphism from π\X̃ to
Y .

• Y embeds into X̃ with P ∈ V (Y ) 7→ P̃ , e ∈ E(Y ) 7→ ẽ

For P ∈ V (Y ) we require the stabiliser πP of P̃ in π to be GP . Similarly, if
e ∈ E(Y ) with w = |e|, the stabiliser πẽ of w should be the subgroup Gw

w of
Gt(w). As before, this forces the vertices and edges to correspond to orbits, so
set

V (X̃) =
⊔
π/πP , E(X̃) =

⊔
π/πẽ

Taking the cosets all corresponding to 1 gives the embedding. Recall that ge
denotes the image of e in π. Define

gẽ = gẽ

o(gẽ) = gg1e−1
e

˜o(e)

t(gẽ) = gg1e
e

˜t(e)

The reason the slightly funny looking extra bits are included is so that the next
result is true:

Lemma 6.1. These expressions are well-defined, i.e. they depend only on the
coset that g is in.

Proof. The LHS depends only on which coset in π/Gw
w g belongs to, where

w = |e|, so it suffices to check that the same is true of the RHS. The first
equation is true because πe = π¯̃e.
For the second, it suffices to show that if h ∈ πẽ, then hg1e−1

e
˜o(e) = g1e−1

e
˜o(e),

i.e.
g1−1e
e πẽg

1e−1
e ⊂ π ˜o(e)

= Go(e)

If 1e = 1, |e| = e, and πẽ = Gē
ē ⊂ Go(e). If 1e = 0, |e| = ē, and gea

eg−1
e =

aē shows geπẽg−1
e = Gē

ē ⊂ Go(e). Showing the third equation is valid is a
computation analogous to that for the second; alternatively, replacing e with ē
reduces to the previous case.
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This gives an action of π and an isomorphism from π\X̃ to Y . If e ∈ E(T )

then ge = 1 so o(ẽ) = ˜o(e), t(ẽ) = ˜t(e), so the tree T lifts to a tree T̃ in X̃. In
algebraic topology, universal covers of graphs are trees, which makes the next
result an important one:

Theorem 6.2. The graph X̃ constructed above is a tree.

Proof. X̃ is connected: if e is an edge of Y , both its extremities belong to
the tree T so one of the extremities of ẽ belongs to T̃ . This shows that if W
is the smallest subgraph containing all the edges ẽ from edges of Y , then W
is connected. Note also that π · W = X̃. It suffices to show that there is a
generating set S of π such that W ∪ sW is connected for all s ∈ S, since by
induction on n W ∪ s1W ∪ s1s2W · · · ∪ s1s2 · · · snW would be connected for
any s1, s2 · · · sn ∈ S ∪ S−1. Then every element g is of the form s1s2 · · · sn so
W ∪ gW would be connected for any g ∈ π.
Take S to be the union of the GP̃ for vertices P of Y and the {ge} for edges e
of Y . If s is from a vertex stabiliser, then it fixes that vertex so W, sW share a
common vertex. For the ge, a computation as before show one of the extremities
is fixed, so again there is a common vertex and the union must be connected.
X̃ is acyclic, i.e. it contains no closed path of positive length without backtrack-
ing: suppose c̃ = (s1ẽ1, · · · snẽn) is such a path. Let this project to a path c in
Y with vertices (P0, P1, · · ·Pn = P0). For ease of notation let 1i denote 1ei and
gi = gei . Then:

sng
1n
n P̃0 = t(snẽn) = o(s1ẽ1) = s1g

11−1
1 P̃0

s1g
11
n P̃1 = t(s1ẽ1) = o(s2ẽ2) = s2g

12−1
2 P̃1

· · ·

sn−1g
1n−1

n−1
˜Pn−1 = t(sn−1 ˜en−1) = o(snẽn) = sng

1n−1
n

˜Pn−1

Let qi = sig
1i−1
i . This implies that there exist ri ∈ GPi such that

q1g1r1 = q2

· · ·
qn−1gn−1rn−1 = qn

qngnrn = q1

Substituting each line into the next line successively gives g1r1 · · · gnrn = 1.
Define µ = (1, r1, r2 · · · rn). We will show that (c, µ) is reduced, which gives the
desired contradiction (with 5.5).
Suppose ei+1 = ēi, gi+1 = g−1

i . This implies 1i+1 = 1 − 1i. Substituting these
into the equation sig1i−1

i giri = si+1g
1i+1−1
i+1 from above, ri ∈ Gei

ei if and only if
s−1
i si+1 ∈ g1i

i G
ei
eig
−1i
i . There is no backtracking in X̃ so

siẽi 6= si+1 ˜ei+1 = si+1ẽi

Hence s−1
i si+1 6∈ g1i

i G
ei
eig
−1i
i , so ri 6∈ Gyi

yi
and the word is reduced.

Some examples for the reader to test:
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1. Suppose all the vertex stabilisers are trivial, so the fundamental group
of the graph is the fundamental group in the sense of algebraic topology.
Then X̃ is the universal covering (in the sense of topological spaces) of Y
relative to T .

2. The construction of X̃ in general closely resembles that done for a segment

Y in a previous section, so it should be no surprise that in the
case of a segment, X̃ is the associated tree.

6.2 The Structure Theorem
Finally, we reach the key theorem after much technical (and perhaps at times
tedious) preparation. Let a group G act without inversions on a connected graph
X. If X is simply-connected, i.e. a tree, we will see that G can be identified
with the the fundamental group of a certain graph of groups (G, Y ).
Let T be a maximal tree of the quotient graph Y = G\X and let j : T → X
be a lift. Fix an orientation E+. We extend this to a section j : E(Y )→ E(X)
such that ¯j(e) = j(ē); it suffices to define the image of e ∈ E+\E(T ). Pick
j(e) such that o(j(e)) is a vertex in the lift of T , so that o(j(e)) = j(o(e)).
t(j(e)) projects to t(e) in V (Y ), as does j(t(e)), so there is some γe ∈ G so that
t(j(e)) = γej(t(e)). This also induces a map from E+\E(T )→ G that extends
to a map E(Y ) → G by the formulae γē = γ−1

e and γe = 1 if e ∈ E(T ). For
each edge e ∈ E(Y ) this gives

o(j(e)) = γ1e−1
e j(o(e))

t(j(e)) = γ1e
e j(t(e))

which, in plain English, says that if the edge is in the orientation, the terminus
gets moved, so for the reverse edge not in the orientation, the origin gets moved
while the terminus gets fixed.
With vertex and edge stabilisers of a vertex Q and edge z of X defined as GQ

and Gz, define the graph of groups (G, Y ) by GP = Gj(P ) and Ge = Gj(e).
The injection Ge → Gt(e) is given by a 7→ ae = γ−1e

e aγ1e
e . This is legitimate

since γ−1e
e Gj(e)γ

1e
e ⊂ γ−1e

e Gt(j(e))γ
1e
e = Gj(t(e)), the last equality coming from

the definition of t(j(e)).
Let φ : π1(G, Y, T ) → G to be the homomorphism defined by the inclusions
GP → G and φ(ge) = γe. Let ψ : X̃(G, Y, T )→ X be the map defined by

ψ(gP̃ ) = φ(g)j(P )

ψ(gẽ) = φ(g)j(e)

It is easy to check that this is a morphism of graphs and is φ−equivariant.
Let W be the smallest subgraph of X containing j(e) for all edges e ∈ E(Y ).
Each edge of W has an extremity in j(T ) and G ·W = X. W is contained in
ψ(X̃) (taking g = 1 above) and φ induces isomorphisms between stabilisers of
corresponding vertices and edges of X̃ and X. Applying lemma 4.7 gives that φ
(and hence ψ) is surjective and the fact that φ induces isomorphisms between
stabilisers shows that ψ is locally injective.

Theorem 6.3. With the above notation, TFAE:
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i X is a tree

ii ψ is a graph isomorphism

iii φ is a group isomorphism

Note how similar the statement is to the corresponding one in the section
on fundamental domains. The proof below also shares some similarities.

Proof. (i) =⇒ (ii): The lemma on locally injective implies injective from the
section on fundamental domains applies here to show ψ is injective. Since it is
surjective, it is an isomorphism.
(ii) =⇒ (i): Not so long ago the universal cover X̃ was shown to be a tree.
(ii) =⇒ (iii): Both morphisms are surjective so it suffices to check injectivity.
We prove the contrapositive. Let N be the kernel of φ and P ∈ V (Y ). N ∩GP̃

is trivial since φ defines an isomorphism between stabilisers. If n is a non-trivial
elemnt of N , then it can’t fix a vertex of Y so nP̃ , P̃ are distinct vertices in X̃
with the same image j(P ) in X, so ψ not injective.
(iii) =⇒ (ii): If G is isomorphic to the fundamental group, then the action
of π1 on X has all the defining properties of the universal cover, so X is the
universal cover.

The result we have been aiming towards has now been proved: (i) =⇒ (iii)
is precisely the statement that if a group acts without inversions on a tree X,
then π1(G, G\X) ' G.

Corollary 6.4. Let X be a tree. Let R be the subgroup of G generated by the
GP , P ∈ V (X). Then R is a normal subgroup of G and G/R can be identified
with the fundamental group (in the sense of topological spaces) of the graph
Y = G\X.

Proof. Once G is identified with π1(G, Y, T ), this follows from the remark made
after we proved the fundamental group is well-defined.

A meatier consequence of the structure theorem is as below. Suppose H =
∗AHi is an amalgam of groups (Hi)i∈I along a common subgroup A. Let G be
a subgroup of H, and for each coset x ∈ H/hi let Gi,x = G ∩ xHix

−1. Gi,x

can then be seen as the stabiliser of x under the action of G on H/Hi by left
multiplication. Then we have

Theorem 6.5. Suppose G\{1} doesn’t meet any conjugate of A. Then there
exists

i a free subgroup F of G

ii for each i ∈ I a subset Xi of H/Hi which is a system of coset representa-
tives for G\H/Hi

such that G = (∗i∈I,x∈XiGi,x) ∗ F .

In plain(er) English, G is the free product of its intersections with the con-
jugates of Hi and a free group.

20



Proof. Define a tree of groups (H, T0) having a vertex A which is joined to
vertices Hi and has no other edges. The associated groups are the obvious ones.
Give each edge the group A with the natural injection into its extremities. Then
H = lim−→(H, T0). Let X be the tree associated to this tree of groups. H acts
on X with T as fundamental domain in such a way that stabilisers of edges
are conjugates of A and stabilisers of vertices are conjugates of either A or
the Hi. G can then be made to act on X by restricting the action from H.
Define Y = G\X and let T be a maximal tree of Y . By the structure theorem,
G ' π1(G, Y, T ). The hypothesis about not meeting conjugates of A means that
the stabiliser in G of each edge of Y is trivial. Then there is a free group F such
that

π1 ' (∗P∈V (T )GP ) ∗ F

(Recall that the fundamental group can be built up by just gluing more groups
as they come along. Here only the identity has to be glued.) Note that by
comparing with the second remark made after we proved that the fundamental
group is well defined, F is the fundamental group (in the sense of topological
spaces) π1(Y, T ). The construction ofX implies V (X) ' H/A

⊔
i∈I H/Hi. After

quotient by the G− action,

V (T ) ' G\H/A
⊔
G\H/Hi

and T can be lifted into X to give a system of representatives

XA ⊂ H/A,Xi ⊂ H/Hi

of G\H/A,G\H/Hi respectively. For x ∈ Xi, the corresponding group GP is
G∩xHix

−1. The same applies for x ∈ A, butG∩xAx−1 is trivial, so substituting
these into the free product for π1 gives the theorem.

It would be pretty silly if it turns out the hypotheses of the theorem are
never satisfied. Luckily they are at least in the trivial case A = {1}, from which
one obtains a result known as the Kurosh subgroup theorem. It took Alexander
Kurosh 14 pages to prove this in his 1934 paper [2], which might suggest to the
reader how powerful the theory that lies beyond is. This is just the beginning.
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