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Abstract

In this paper we prove some results, in particular about Serre’s Prop-
erty (FA) and Kazhdan’s Property (T), for the l-angular model of random
groups that are known for the Gromov model. The method of showing
certain groups don’t have Property (T) follows that of Ollivier and Wise,
constructing walls in the Cayley complex, which has subsequently been
used by other authors in [MP15] and [Mon21] with improved bounds.

1 Introduction

The Gromov model for random groups refers to the following method of gen-
erating a random group: fix a set of generators g1 . . . gn and choose at random
a set of (2n− 1)dl reduced words of length l. For various properties of groups,
such as hyperbolicity, small cancellation, Property (T) and so on, one can cal-
culate the probability it holds in a random group. See [Oll05] for a survey of
important results and open questions. In particular, as l → ∞ one obtains some
indication of what properties a ’generic’ group at density d has (this should be
taken with the caveat that there is no way of putting a uniform probability
measure on the set of all countable groups). If the limiting probability is 1, the
property is said to hold with overwhelming probability (w.o.p.). For example,
when Gromov first introduced his model of random groups in [Gro93] he proved
that at density d < 1

2 a random group is hyperbolic w.o.p., while if d > 1
2 a

random group is Z/(2) or trivial w.o.p.
Given the ubiquity of Property (T) in mathematics, it is natural to consider at
what densities a random group has Property (T). For the Gromov model, this
is quite difficult as the lengths of relators tend to infinity. It is much easier to
fix a length of relators, and consider the behaviour as the number of generators
tends to infinity, which is what is done here.

Definition 1 (l−angular model for random groups). Fix a natural number l
and a density d ∈ (0, 1). Let Wn be the set of all cyclically reduced words of
length l over Sn, an alphabet of size n, allowing inverses of letters. Let Rn be
a subset of Wn having (2n− 1)ld elements, chosen at random with the uniform
distribution among all such sets. We define a random group in the G(n, l, d)
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model to be a group given by the presentation ⟨Sn|Rn⟩. The model G(n, l, d)
will be also called the l−gonal model on n generators at density d.

Note that this is also known as the k-angular model, where k plays the same
role as l. When l = 3, the model is called the triangular model or the Zuk
model. More is known about Property (T) in the l-angular model than in the
Gromov model (see [Odr]).
In section 2 we prove that a random group in the l-angular model has the small
cancellation property and at low densities has the Greendlinger property and
hence solvable word problem. In section 3 we prove that at low densities does
not have Property (T) and give a range of densities for which they have Property
(FA). The main results are:

Theorem (proposition 12). For l ≥ 7 and any 3
l < d < 1

2 , a random group in
the l-angular model satisfies property (FA).

Theorem (theorem 15). When d < 1
5 w.o.p. a random group at density d

doesn’t have Property (T).

This is done by finding a codimension-1 wall in the Cayley complex, whose
stabiliser is a codimension 1 subgroup, and this gives rise to an ”essential” action
of the group on a CAT(0) cube complex by the work of Sageev in [Sag95]. We
note that the arguments in [OW09] apply verbatim to show that in fact a random
group at density d < 1

6 acts freely and cocompactly on a CAT(0) cube complex.

2 Small Cancellation

Small cancellation was first developed in [Gr60] and has subsequently become an
extremely useful tool for constructing groups with exotic properties, for example
Olshanskii’s construction of Tarski monsters [Ol80]. We show in this section
that, analogous to the Gromov model, random groups in the l-angular model
satisfy a small cancellation condition.

Definition 2. Let G = ⟨S|R⟩ be a group presentation where R ⊆ F (X) is a set
of freely reduced and cyclically reduced words in the free group F (X) such that
R is symmetrized, that is, closed under taking cyclic permutations and inverses.

A nontrivial freely reduced word u in F (X) is called a piece with respect to
the presentation if there exist two distinct elements r1, r2 in R that have u as
maximal common initial segment.

Note that any presentation can be symmetrized by just adding in the cyclic
permutations and inverses without altering the isomorphism type of the group.

Definition 3. Let 0 < λ < 1. The presentation is said to satisfy the C ′(λ)
small cancellation condition if whenever u is a piece w.r.t. the presentation and
u is a subword of some r ∈ R, then |u| < λ|r|. Here |v| is the length of a word
v.
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This is useful because it allows one to do induction on van Kampen diagrams
by successively removing discs.

Definition 4. A (singular) disc diagram is a compact, contractible subcomplex
of R2. If we orient R2, thenD has a well-defined boundary cycle. A disc diagram
is labelled if each (oriented) edge is labelled by an element s ∈ S±. The set of
face labels is the set of boundary cycles of the 2-cells. If all the face labels are
elements of R±, then we say D is a diagram over ⟨S | R⟩.
Definition 5 (van Kampen diagrams). If w ∈ ⟨⟨R⟩⟩, and w is the boundary
cycle of a singular disc diagram D over the presentation ⟨S|R⟩, we say that D
is a van Kampen diagram for w.

If the van Kampen diagram has a disc with long boundary word, then re-
moving the disc leaves another van Kampen diagram with fewer discs but with
similar length to area ratio and this is what allows us to do induction.
In [Gro93] Gromov gives explains reason why random groups in the Gromov
model should satisfy the small cancellation property. Below we give a concrete
calculation for the l-angular model.

Proposition 6. Let d < 1
2 . Fix ϵ > 0. With overwhelming probability, a

random group in the l-angular model at density d satisfies the C ′(2d+ ϵ) small
cancellation condition but doesn’t satisfy the C ′(2d− ϵ) condition.

Proof. Note that there are approximately (2n− 1)l cyclically reduced words of
length l in Fn, so for a fixed word w of length λl, 0 < λ < 1, there are l(2n−1)l−λl

words containing w as subword (l accounts for the cyclicity). Hence there are(
l(2n−1)l−λl

2

)
pairs of words which, if chosen as relators, would violate the C ′(λ)

condition by having w as a subword, and there are (2n− 1)λl choices for w.
Let |v| denote the length of a word v, w ∈ v mean w is a subword of v, and
1v1,v2 be the indicator function for v1, v2 both being chosen as relators. Note
that for any word w satisfying w ∈ v1, w ∈ v2,

E[1v1,v2
] =

( (2n−1)l−2
(2n−1)lλ−2

)( (2n−1)l

(2n−1)lλ

) .

Consider X =
∑

|w|=λ

∑
w∈v1,w∈v2

1v1,v2
. Then C ′(λ) is satisfied if and only if

X = 0.
Suppose first λ = 2d+ ϵ. Using linearity of expectation,

E[X] =
∑

|w|=2d+ϵ

(
l(2n− 1)l−(2d+ϵ)l

2

)( (2n−1)l−2
(2n−1)ld−2

)( (2n−1)l

(2n−1)ld

)
= (2n− 1)(2d+ϵ)l

(
l(2n− 1)l−(2d+ϵ)l

2

)( (2n−1)l−2
(2n−1)ld−2

)( (2n−1)l

(2n−1)ld

)
≤ (2n− 1)(2d+ϵ)l(l(2n− 1)l−(2d+ϵ)l)2

( (2n−1)l−2
(2n−1)ld−2

)( (2n−1)l

(2n−1)ld

)
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Expanding the binomial coefficient,( (2n−1)l

(2n−1)ld)

)( (2n−1)l−2
(2n−1)ld−2

) =
(2n− 1)ld((2n− 1)ld) − 1)

(2n− 1)l((2n− 1)l − 1)
≈ (2n− 1)−2l(1−d).

Hence the expression for E[X] is

O((2n− 1)l(2d+ϵ−2(1−(2d+ϵ))−2(1−d)) = O((2n− 1)−ϵ)

which tends to 0 as n → ∞. By Markov’s inequality, P(X = 0) → 1 as n → ∞.
Now suppose λ = 2d− ϵ. Note 1v1,v21v3,v4 = 1v1,v2,v3,v4 , where {v1, v2, v3, v4} is
treated as a multiset. Then

X2 =
∑

|w|=2d−ϵ

∑
w∈v1,w∈v2

12v1,v2

+ 2
∑

|w|=2d−ϵ

∑
w∈v1,w∈v2,w∈v3,w∈v4

1v1,v2,v3,v4

+ 2
∑

|w1|=2d−ϵ=|w2|,w1 ̸=w2

∑
w1,w2∈v1,v2

1v1,v2

+ 2
∑

|w|=2d−ϵ

∑
w∈v1,v2,v3

1v1,v2,v3

+ 2
∑

|w1|=2d−ϵ=|w2|,w1 ̸=w2

∑
w1∈v1,v2,w2∈v2,v3

1v1,v2,v3

+ 2
∑

|w1|=2d−ϵ=|w2|,w1 ̸=w2

∑
w1∈v1,v2,w2∈v3,v4

1v1,v2,v3,v4

The first term is just X, so has expectation O((2n−1)lϵ) by a similar calculation
as above.
The second term has expectation

2(2n− 1)l(2d−ϵ)

(
l(2n− 1)l(1−2d+ϵ)

4

)
E[1v1,v2,v3,v4 ]

= 2(2n− 1)l(2d−ϵ)

(
l(2n− 1)l(1−2d+ϵ)

4

)( (2n−1)l−4
(2n−1)ld−4

)( (2n−1)l

(2n−1)ld

) = O((2n− 1)l(3ϵ−2d).

For the third term, we split further based on whether |w1 ∩ w2| = 0 or not.
If |w1 ∩w2| = i > 0, then the number of vi containing both words concatenated
is l(2n−1)l(1−2(2d−ϵ))+i and since either w1 precedes w2 or vice versa, there are
2(2n − 1)2l(2d−ϵ)−i pairs (w1, w2), so the contribution to expected value from
such pairs is lO((2n− 1)l(2ϵ−d)+i) (note l is fixed)

If |w1 ∩ w2| = 0, then the number of pairs of subwords is
(
(2n−1)l(2d−ϵ)

2

)
and

for each pair of subwords there are at most
(
l2(2n−1)l(1−2(2d−ϵ))

2

)
pairs of words
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containing w1, w2 as disjoint subwords. Hence the contribution to expectation
isO((2n− 1)2l(ϵ−d)).
For the fourth term, a computation similar to that for the second term gives an
expectation O((2n− 1)l(2ϵ−d).
The calculation for the fifth term is similar to that of the third term. Split by
the intersection of w1, w2 in v2.
If |w1 ∩w2| = i > 0, then the number of vi containing both words concatenated
is l(2n − 1)l(1−2d+ϵ)−i and since either w1 precedes w2 or vice versa, there are
2(2n − 1)l(2d−ϵ)+i such pairs (w1, w2). There are then (2n − 1)l(1−2(2d−ϵ))+i

choices for v2, and at most (2n−1)l(1−2d+ϵ)−1 choices for each of v1, v3, so the
contribution to expected value is lO((2n− 1)l(3ϵ−2d)+i).
If |w1 ∩ w2| = 0, then the number of vi containing both words concatenated is

l(2n − 1)l(1−4d+2ϵ) and there are
(
(2n−1)l(2d−ϵ)

2

)
such pairs (w1, w2). There are

then (2n−1)l(1−2(2d−ϵ)) choices for v2, and at most (2n−1)l(1−2d+ϵ)−1 choices
for each of v1, v3, so the contribution to expected value is O((2n− 1)l(2ϵ−d)).
The sixth term has expectation

2

(
(2n− 1)l(2d−ϵ)

2

)(
l(2n− 1)l(1−2d+ϵ)

2

)2
( (2n−1)l−4
(2n−1)ld−4

)( (2n−1)l

(2n−1)ld

) =
l2

4
(2n−1)2lϵ+o((2n−1)2lϵ).

Compare with E[X]2 = l2

4 (2n − 1)2lϵ + o((2n − 1)2lϵ). Note in both terms 3
and 5, i < ld, which means that (2n− 1)2lϵ is asymptotically larger than any of

the terms apart from term 6, and the coefficients agree so E[x]2
E[X2] → 1 so by the

second moment method P(X = 0) → 0.

We now show that the Greendlinger property holds at low densities, allowing
the word problem to be solved by the Dehn algorithm in these cases. The fol-
lowing lemmas are a form of isoperimetric inequality for van Kampen diagrams
that will be useful throughout the rest of this paper.

Lemma 7. (Theorem 2 in [Oll07], Theorem 2.6 in [Odr] for the l−angular
model.) At density d, for any ϵ > 0 the following property occurs with
overwhelming probability: all reduced van Kampen diagrams D satisfy

|∂D| > (1− 2d− ϵ)l|D|

Lemma 8. For any ϵ > 0 , with overwhelming probability, at density d the
following holds: Let D be a reduced van Kampen diagram with at least two
faces. There exist two faces of D each having at least l(1−5d/2−ϵ) consecutive
edges on the boundary of D.

Proof. With lemma 7, the proof of Lemma 16 (the lemma statement but without
’consecutive’) and the subsequent proof of the Greendlinger property in [Oll07]
goes through, so is true in the l-angular model too.

Proposition 9. A random group in the l-angular model satisfies the Greendlinger
property whenever d < 1/5 for l even, or d < 1

5 + 1
5l for l odd.
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Proof. When d < 1
5 , l(1 − 5d/2 − ϵ) > l

2 . When l is even, this is optimal as
there can be words of length exactly l/2. However, when l is odd we only need
l(1− 5d/2− ϵ) > l−1

2 , which is possible for d < 1
5 + 1

5l if ϵ is chosen to be small
enough.

We also note that Ollivier’s proof of the failure of the Dehn algorithm also
goes through as given in his paper provided, in our case, that l is large enough.
His construction requires (d− ϵ)l, (2d− ϵ)l, (d− ϵ)l/2 to be lengths of subwords,
so in particular integers. At the end of his paper, he derives a contradiction
from 7(1− 2d− ϵ′)l < 6(1− 2d)l+8ϵl− 2 for sufficiently small ϵ, ϵ′. In our case,
ϵ, ϵ′ are subject to the same restrictions, so we may take them to be equal. But
there is some ϵ ∈ (0, 2

l ) making these integers.

7(1− 2d− ϵ)l ≥ 6(1− 2d)l + 8ϵl − 2 ⇔ 15ϵ+ 2d ≤ 1 + 2/l (1)

1− 5d/2 +
3ϵ

2
<

1

2
⇔ 1 + 3ϵ < 5d (2)

Eliminating d, we require ϵ < 5
81 (

1
2 +

1
l ). When the RHS is greater than 2

l , this
is certainly possible. Solving for l, this is equivalent to l ≥ 63.

3 Property (FA) and Property (T)

Definition 10 (Definition 2.1 in [DGP]). A basic automaton (also abbrevi-
ated as a b-automaton) over an alphabet S with transition data {σs} is a pair
(S, {σs}), where {σs}s∈{∅}∪S± is a family of subsets of S±.
The language of a b-automaton with transition data {σs} is the set of all
(nonempty) words over S beginning with a letter in σ∅ and such that for any
two consecutive letters ss′ we have s′ ∈ {σs}. We say that a b-automaton is
λ−large, for some λ ∈ (0, 1), if σ∅ ̸= ∅ and for each s ∈ S± we have |σs| ≥ λ2n.

Definition 11. Let G be a group acting without inversions on a tree X. Denote
by XG the set of points fixed by G. G is said to satisfy (FA) if XG ̸= ∅ for any
tree X that G acts on.

Proposition 12. For l ≥ 7 and any 3
l < d < 1

2 , a random group in the l-angular
model satisfies property (FA).

Proof. Following the notation and arguments in [DGP], it suffices to prove that
a random set of relators intersects all the 1

3 -large automata. There are 22n(2n+1)

automata in total, and if an automata is 1
3 -large then it has at least ( 2n3 − 1)l−1

words of length l, so for a fixed automata, the probability a set of random

relators doesn’t intersect it is
(
(2n−1)l−( 2n

3
−1)l−1

(2n−1)dl
)

( (2n−1)l

(2n−1)dl)
.
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Applying Stirling’s approximation and regrouping terms gives√
((2n− 1)l − ( 2n3 − 1)l)((2n− 1)l − (2n− 1)dl)

(2n− 1)l((2n− 1)l − ( 2n3 − 1)l − (2n− 1)dl)

× (1 +
(2n− 1)dl

(2n− 1)l − (2n/3− 1)l−1 − (2n− 1)dl
)(2n−1)l−(2n/3−1)l−1

× (1− (2n− 1)−(1−d)l)(2n−1)l

× (1−
( 2n3 − 1)l−1

(2n− 1)l − (2n− 1)dl − 2n
3 − 1)l−1

)(2n−1)dl)

The expression in the square root is asymptotically 1 so it suffices to consider
the remaining terms
Since 1 + x ≤ ex for all real x, applying this to each bracket in the expression
shows this expression is ≤

exp((2n− 1)dl

× (
(2n− 1)dl

(2n− 1)l − (2n− 1)dl − 2n
3 − 1)l−1

− 1−
2n
3 − 1)l−1

(2n− 1)l − (2n− 1)dl − 2n
3 − 1)l−1

)

× (2n− 1)dl

(2n− 1)l − (2n− 1)dl − 2n
3 − 1)l−1

)

which tends to 0, and

(
( 2n3 − 1)l−1

((2n− 1)l − (2n− 1)dl − 2n
3 − 1)l−1

) = O(n−1)

Letting X =
∑

u is a 1
3 -large automata 1u missed,

E[X] ≤ e−O(ndl−1)22n(2n+1) → 0

since dl − 1 > 2 so the probability of any 1
3 -large automata being missed tends

to zero.

Remark. When l = 2, there are 2n(2n − 1) reduced words of length 2 and,
for a fixed generator, at most 4(2n− 1) words involving that generator. Hence
there is a high probability that the chosen relators don’t involve some generator,
meaning the group G splits as a free product Z ⋆ H (where H is some quotient
of Fn−1), so G doesn’t have FA [Se80]. When d < 1

l , a random group at density
d is free with overwhelming probability, so won’t have FA. [AR17]

We now discuss Property (T). The standard reference is [BdlHV].

Definition 13. Let (π,H) be a continuous unitary representation of a locally
compact, σ−compact topological group G.
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1. Given a subset S ⊆ G and a number ϵ > 0, a unit vector v in H is
(S, ϵ)-invariant if supg∈S ||π(g)v − v|| ≤ ϵ||v||.

2. The representation (π,H) has almost invariant vectors if it has (K, ϵ)–
invariant vectors for every compact subset K of G and every ϵ > 0.

3. The representation (π,H) has invariant vectors if there exists a unit vector
v in H such that π(g)v = v for all g ∈ G.

Definition 14. A locally compact Hausdorff topological groupG has Kazhdan’s
Property (T) if for every unitary representation π of G, if π has almost invariant
vectors then it also has invariant vectors.

Property (T) implies Property (FA) [Wat81], but comparing the next two
propositions gives a range of densities of random groups where the converse is
not true.

Theorem 15. When d < 1
5 w.o.p. a random group at density d doesn’t have

Property (T).

We follow the proof strategy used in [OW09].
Define a hypergraph on a Cayley complex to be a graph Γ whose set of vertices
is the set of 1-cells in the Cayley complex. There is an edge in Γ between two
vertices if there is some 2-cell R in the Cayley complex such that these vertices
correspond to antipodal 1-cells in the boundary of R. R is the 2-cell containing
the edge. If l is odd subdivide all 1-cells of X̃ so that hypergraphs can be
defined.

Lemma 16 (Lemma 2.3 in [OW09]). Suppose a hypergraph Λ is an embedded
tree in the simply connected Cayley complex X̃. Then X̃ − Λ consists of two
components.

Proof. Since X̃ is simply connected, H1(X̃) = 0. Let U be a small neighbour-
hood of the tree and V the complement of the tree. Note that one can take U to
be homeomorphic to a small thickening of the tree, say Λ× (−ϵ, ϵ), since all the
2-cells are disjoint from each other, so within a 2-cell the neighbourhood of the
tree is just a neighbourhood of the diameter of a disc. These can then be taken
so that they are glued together compatibly. Then U ∩V = Λ× (−ϵ, ϵ)−Λ×{0}.
The homological Mayer-Vietoris sequence gives:

H1(X̃) = 0 → H0(U ∩ V ) = H0(Λ× (−ϵ, ϵ)− Λ× {0})
→ H0(X̃ − Λ)⊕H0(Λ× (−ϵ, ϵ)) → H0(X̃) → 0

Since U ∩ V is homeomorphic to Λ× (−ϵ, 0)∪Λ× (0, ϵ), which deformation
retracts to two copies of Λ, the sequence is then

0 → Z2 → H0(X̃ − Λ)⊕ Z → Z → 0

Hence H0(X̃ − Λ) ∼= Z2.
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Proposition 17 (Lemma 7.3 in [OW09]). When l is odd and d < 1
5 or when l

is even and d < 1
5 + 1

5l , with overwhelming probability the hypergraphs of the
Cayley 2-complex of a random group at density d are embedded leafless trees.

Proof. Note that proposition 9 implies that at the given densities, the following
condition (Condition 4.2. in [OW09]) is satisfied with overwhelming probability:
For every reduced spurless van Kampen diagram D → X either
(1) D has at most one 2-cell
(2) D contains at least two shells.
Following the arguments given in [OW09] show that the hypergraph is an em-
bedded tree at the stated densities. To show that it is leafless, it suffices to
show that every generator is contained in at least two relators. (When l is odd
the edges have to be subdivided to carry out this construction, but the same
argument is valid since if s1 appears in two different relators, every half segment
of s1 also appears twice to give the corresponding vertex in the wall at least two
neighbours.) Fix a generator s1.
There are (2n − 3)l reduced words of length l not involving s1 (or s−1

1 ), so
the probability of picking a set of relators with at most one containing s1 is

( (2n−3)l

(2n−1)dl)

( (2n−1)l

(2n−1)dl)
+

((2n−1)l−(2n−3)l)( (2n−3)l

(2n−1)dl−1)

( (2n−1)l

(2n−1)dl)
1i be the indicator function for the ith

generator appearing at most once, 1 ≤ i ≤ n, and let X =
∑n

i=1 1i. It suf-

fices to show E[X] → 0. For large enough n,
((2n−1)l−(2n−3)l)( (2n−3)l

(2n−1)dl−1)

( (2n−1)l

(2n−1)dl)
≤

((2n−1)l−(2n−3)l)( (2n−3)l

(2n−1)dl)

( (2n−1)l

(2n−1)dl)
as (2n− 1)dl < (2n−3)l

2 .

Applying Stirling, 1 + x ≤ ex, and noting that the square root term is asymp-
totically one as before,( (2n−3)l

(2n−1)dl

)( (2n−1)l

(2n−1)dl

) ∼ (2n− 3)l(2n−3)l((2n− 1)l − (2n− 1)dl)(2n−1)l−(2n−1)dl

(2n− 1)l(2n−1)l((2n− 3)l − (2n− 1)dl)(2n−3)l−(2n−1)dl

= (1 +
(2n− 1)dl

(2n− 3)l − (2n− 1)dl
)(2n−3)l(1− (2n− 1)dl

(2n− 1)l
)(2n−1)l

× (1− (2n− 1)l − (2n− 3)l

(2n− 1)l − (2n− 1)dl
)(2n−1)dl

≤ exp ((2n− 1)dl(
(2n− 3)l

(2n− 3)l − (2n− 1)dl
− 1− (2n− 1)l − (2n− 3)l

(2n− 1)l − (2n− 1)dl
))

(2n−3)l

(2n−3)l−(2n−1)dl
− 1 = (2n−1)dl

(2n−3)l−(2n−1)dl
→ 0, while (2n−1)l−(2n−3)l

(2n−1)l−(2n−1)dl
→ 1, so for

large n,
( (2n−3)l

(2n−1)dl)

( (2n−1)l

(2n−1)dl)
≤ exp− (2n−1)dl

2 and hence

E[X] ≤ n(1 + ((2n− 1)l − (2n− 3)l) exp− (2n−1)dl

2 → 0.

9



Definition 18. A disc diagram D → X̃ is said to be collared if it has the
following properties

1. there is an external 2-cell C called a corner of D

2. there is a hypergraph segment λ → D → X̃ of length at least 2

3. the first and last edge of λ lie in C, and no other edge lies in C

4. λ passes through every other external 2-cell of D exactly once

5. λ does not pass through any internal 2-cell of D.

Definition 19. A cancellable pair in Y → X is a pair of distinct 2-cells R1, R2

meeting along an edge e in Y such that R1 and R2 map to the same 2-cell in
X, and moreover, the boundary paths of R1 and R2 starting at e, map to the
same path in X. A map Y → X is reduced if Y contains no cancellable pairs.
Note that the composition of reduced maps is reduced.

Lemma 20 (Lemma 3.17 in [OW09]). Let Λ be a hypergraph which is an
embedded tree in X̃. Let λ be a segment of Λ. Let γ be an embedded path
in X̃ with the same endpoints as λ. (Here γ is an edge path which starts and
ends at “midedge vertices” corresponding to vertices of Λ.) Then there exists a
reduced diagram F quasicollared by λ and γ. Moreover, in the case γ does not
intersect Λ anywhere except at its endpoints, then F is actually collared.

This lemma, together with lemma 7, is used to prove the next theorem that
the hypergraph is quasi-isometrically embedded.

Theorem 21 (Theorem 4.5 in [OW09]). When l is odd and d < 1
5 or when l

is even and d < min{ 1
5 + 1

5l ,
1
4}, with overwhelming probability the distance in

˜X(1) between two vertices of a hypergraph Λ is at least ( 12 − 2d− ϵ)l times the
minimal number of edges joining them in Λ

Corollary 22 (Corollary 4.6 in [OW09]). In random groups at density d <
1
5 , with overwhelming probability, the stabiliser of any hypergraph is a free,
quasiconvex subgroup that acts cocompactly on the hypergraph.

Proof. The proof that the stabiliser is free and quasiconvex is identical to in
[OW09]. To show that the quotient is compact, note that if two vertices of the
hypergraph come from 1−cells g1, g1s and g2, g2s for the same generator s, then
the action of g1g

−1
2 shows that they are in the same orbit of the action of the

stabiliser, so the number of vertices in the quotient is at most the number of
generators. Similarly, if two edges come from 2−cells with the same boundary
word, then they are in the same orbit, so the number of edges in the quotient
is at most the number of relations, which is finite.

Lemma 23 (Lemma 6.1 in [OW09]). Consider a random group at density d.
Then with overwhelming probability the following holds. Let D be a reduced
diagram with |D| = 3, and suppose D contains a 2-cell corresponding to relator
r1. Then the number of internal 1-cells in D is at most 2dl + ϵl.
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The key estimate used is that

3(2n− 1)−dlESn(D) ≤ 3(2n− 1)2dl−L

and the last term (2n − 1)2dl−L tends to zero as n → ∞ if L ≥ 2dl + ϵl. The
same observation underlies the proof of lemmas 6.2 and 6.3 in [OW09].

Theorem 24 (Theorem 7.4 in [OW09]). With overwhelming probability, ran-
dom groups G at density d < 1

5 have a subgroup H which is free, quasiconvex,
and such that the relative number of ends e(G,H) is at least 2. This subgroup
can be taken to be the orientation-preserving stabiliser of any hypergraph.

The proof of theorem 24 follows that of [OW09], replacing the theorems and
lemmas used there with the versions stated above.

Proof of theorem 15. By theorem 24 random groups at density d < 1
5 have

a codimension-1 subgroup and it is proved in [NR98] that a group with a
codimension-1 subgroup doesn’t have Property (T).

Remark. Although some of the lemmas in this paper have improved bounds,
the bound in lemma 6.3 appears to be tight for this method, so the critical
density is still d < 1

5 . As far as the author knows the best result known for the
Gromov model, proved in [Mon21], is that random groups at density d < 3

14
don’t have Property (T).
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