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1 Introduction
This expository essay will introduce modular forms, with a view to their appli-
cation to the problem of deciding which positive integers can be written as a
sum of squares. The material closely follows that of [1].
The first sections will introduce the necessary background from analysis and
lay the groundwork for later sections by proving the requisite properties about
functions of number-theoretic interest. The rest of the essay will use these tools
to answer the question of how many ways can an integer be written as a sum
of two or four squares, a question that has attracted attention from many great
mathematicians over the past hundreds of years.

2 Some complex analysis
As this essay aims to be as self-contained as possible, we begin by proving some
technical results needed later. The general principle will be that basic facts
about complex analysis (those appearing in the schedules for the undergraduate
Cambridge Mathematical Tripos) will be assumed, but of the further results, as
many as possible will be proved (or sketched if the details aren’t important).We
begin by dealing with infinite products.

The product
∏∞
n=1(1 + an) is said to converge if limN→∞

∏N
n=1(1 + an) ex-

ists.

Proposition 1. Let {an}∞n=1 be a sequence of complex numbers such that
∑∞
n=1 |an|

converges. Then the infinite product
∏∞
n=1(1 + an) converges. Furthermore, it

is 0 if and only if one of the factors is 0.

Proof. Since the sum converges, there is some integer k such that for all n >
k, |an| < 1

2 . Then, after this point, the sequence 1 + an is contained in the right
half plane, so it is possible to define a continuous logarithm for all terms in the
sequence. Let bn = log(1 + an). Writing

∏N
n=k(1 + an) =

∏N
n=k e

bn = e
∑
bn ,

the infinite product converges if and only if the infinite sum
∑
bn does. In the

real case, we would be done by the well known fact 1 + x ≤ ex. Unfortunately,
x = 2πi means more care is needed over C. Nevertheless, for |z| < 1/2, the
Taylor series and triangle inequality show that | log(1 + z)| ≤

∑∞
n=1

|z|n
n ≤

|z|
∑∞
n=1 |0.5|n−1 = 2|z|, so the hypothesis that

∑
|an| converges implies that∑

bn converges absolutely, hence the product converges. Finally,
∏∞
n=k(1 +

an) = eb 6= 0 for some b ∈ C, so the product is 0 if and only 1 +an = 0 for some
1 ≤ n ≤ k − 1.
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This generalises to functions which ’behave like constants’:

Proposition 2. Let {Fn} be a sequence of holomorphic functions on an open set
U . Suppose there are constants cn > 0 such that

∑
cn <∞ and |Fn(z)−1| ≤ cn

for all z ∈ U . Then

i The product
∏∞
n=1 Fn(z) converges uniformly in U to a holomorphic func-

tion F .

ii If all the Fn never vanish, then F ′(z)
F (z) =

∑∞
n=1

F ′n(z)
Fn(z)

Proof. Trying to use the previous proposition quickly leads to the idea of letting
an(z) = Fn(z) − 1 so that |an(z)| ≤ cn. Then all estimates are uniform in z
because the cn are constants, so the product converges uniformly to a holomor-
phic function F .
For (ii), define GN (z) =

∏N
n=1 Fn(z). GN → F uniformly in U , so the deriva-

tives converge uniformly as well, i.e. G′N → F ′ uniformly. Let K be a compact
subset of U . GN never vanishes, so |GN | is bounded below away from 0 on K
by compactness. Hence G′N

GN
→ F ′

F uniformly on K, and since K was arbitrary,

the limit holds for all z inU . Finally, the product rule shows G′N
GN

=
∑N
n=1

F ′n
Fn

,
which completes the proof.

Next, a cute relation between a function f and its Fourier transform f̂ .

Theorem 3 (Poisson summation). Let f be a function holomorphic on Sa =
{z : Im(z) < a} for some a > 0, such that there is a constant A > 0 satisfying
|f(z)| ≤ A

1+Re(z)2 for all z ∈ Sa. Then
∑
n∈Z f(n) =

∑
n∈Z f̂(n).

Sketch proof. Consider f(z)
e2πiz−1 . This has simple poles at the integers, with

residue f(n)
2πi at z = n.Let γN be the rectangular contour with vertices at ±N +

0.5± ib for some 0 ≤ b ≤ a. By the residue theorem,
∑
|n|<N f(n) =

∫
γN

f(z)dz
e2πi−1 .

The decay condition means that the integral along the vertical edges goes to 0
as N → ∞, and along the horizontal edges, expanding into a geometric series
and interchanging order of summation, which is valid by uniform convergence,
followed by applying Cauchy’s theorem on each of the summands to move back
to the real line, gives the result.

This is an invaluable tool for proving that all sorts of infinite sums are equal,
as demonstrated below.

Application 1 We sketch a proof that

I =

∫ ∞
−∞

e−2πixzdx

coshπx
=

1

coshπz

, i.e. 1
coshπz is its own Fourier transform.

Consider the integral of e
−2πixzdx
coshπx along the contour with vertices at ±R,±R+2i.

As R →∞, one can show that the integral along the vertical sides disappears,
and apply periodicity of cosh to show that the integral along the top is e−4πzI.
Computing the residues at the poles i/2, 3i/2 and applying the residue theorem
gives the result.
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Some algebra then gives that, if t > 0 so that no signs are flipped, the Fourier
transform of f(x) = e−2πiax

cosh πx
t

is f̂(z) = t
coshπ(z+a)t , and Poisson summation gives

∞∑
n=−∞

e−2πian

cosh πn
t

=

∞∑
n=−∞

t

coshπ(n+ a)t
(1)

Application 2 We sketch a proof that∫ ∞
−∞

e−2πixze−πx
2

dx = e−πz
2

, i.e. e−πz
2

is its own Fourier transform.
Let γR be the rectangular contour with vertices at ±R,±R + iz. e−πz

2

is
holomorphic, so

∫
γR
e−πz

2

dz = 0. As R → ∞, simple estimates show the
integral along the vertical sides tends to 0.
The integral along the real axis tends to

∫∞
−∞ e−πx

2

dx, which equals 1 as a
consequence of the well-known Gaussian integral.
The integral along the other horizontal side tends to −eπz2

∫∞
−∞ e−2πixze−πx

2

dx.
Since the sum of these is 0, the result follows.
For t > 0, a ∈ R, the change of variables x 7→ t1/2(x + a) shows that f(x) =

e−πt(x+a)2 has Fourier transform f̂(z) = t−1/2e−πz
2/te2πiaz. Applying Poisson

summation then gives

∞∑
n=−∞

e−πt(n+a)2 =

∞∑
n=−∞

t−1/2e−πn
2/te2πian (2)

Application 3 Consider the function f(z) = 1
(z+τ)k

, for Im(τ) > 0. This

has Fourier transform f̂(t) =
∫∞
−∞

e2πitzdz
(z+τ)k

= (−2πit)k−1

(k−1)!

∫∞
−∞

e2πitzdz
(z+τ) by repeated

integration by parts.
Now consider g(t) = e2πitτ , t > 0, 0 otherwise.

∫∞
−∞ g(t)e2πixtdt =

∫∞
0
e2πit(τ+x)dt =

−1
2πi(x+τ) , where the boundary term disappears since |e2πit(τ+x)| = e−2πtIm(τ) →
0 as t→∞.
Hence by the Fourier inversion formula, −2πig(t) is the Fourier transform of

1
x+τ , so f̂(t) = (−2πi)k

(k−1)! t
k−1e2πitτ , t > 0, 0 otherwise. Applying Poisson summa-

tion then gives

∞∑
n=−∞

1

(n+ τ)k
=

(−2πi)k

(k − 1)!

∞∑
t=1

tk−1e2πitτ (3)

It may shock the reader to learn that these aren’t just three randomly chosen re-
sults that can be proved by Poisson summation. If later on a result is magically
proved by reference to an earlier equation that doesn’t come to mind, chances
are it will be one of these.
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3 Modular Forms
Let SL2(Z) be the group of matrices with integer entries and determinant 1.
This acts on the complex plane by Mobius maps. Since −I acts trivially, we
then consider PSL2(Z) = SL2(Z)/{±I}, which is sometimes called the modular
group (others define SL2(Z) to be the modular group).
For the rest of this essay, let H = {z : Im(z) > 0}. Also let D = {τ ∈ H|Re(τ) ≤
1/2 and |τ | ≥ 1}, known as the fundamental domain of the modular group.

Lemma 4. Every point in H can be mapped to a point in D by finitely many
applications of one of the following Mobius maps or their inverses:

i T : τ 7→ τ + 1

ii S : τ 7→ − 1
τ

Geometrically, this should be quite believable: if Im(τ) ≥ 1, just translate it
into the strip. If Im(τ) < 1 and the point lands in the unit disc after translation,
just use S to throw it up the plane far enough so that more translations does
the job.

Proof. Let G be the group generated by T and S, and consider the correspond-
ing Mobius maps. It is not particularly difficult to show that G ≡ SL2(Z)
algebraically; alternatively, one can consider the action of G on D to give a
geometric proof, but the proof is omitted. Every Mobius map M is represented

by some matrix
(
a b
c d

)
, and since both T and S are represented by ma-

trices in SL2(Z), every transformation in G is as well. In particular, for all
M ∈ G, Im(M(τ)) = (ad−bc)Im(τ)

|cτ+d|2 = Im(τ)
|cτ+d|2 , since ad − bc = 1, a, b, c, d ∈ Z.

This also shows that SL2(Z) acts on H.
Moreover, c, d ∈ Z means that, for every τ ∈ H, there is some M0 ∈ G
such that |cτ + d| is minimal, hence Im(M0(τ)) is maximal. Since applying T
doesn’t affect the imaginary part, we can further assume that |Re(Mτ )| ≤ 1/2.
Finally, Im(M0(τ))

|M0(τ)| = Im(S(M0(τ))) ≤ Im(M0(τ)) by maximality, so |M0(τ)| ≥
1, i.e. M0(τ) ∈ D.

Definition. Let k be an integer. A function f is said to be weakly modular of
weight k if it is meromorphic in H and satisfies

f(z) = (cz + d)−kf(
az + b

cz + d
)

for all
(
a b
c d

)
∈ SL2(Z).

Combined with the previous lemma, a function f is weakly modular of weight
k if and only if for all z ∈ C, f(z + 1) = f(z) and f(−1/z) = zkf(z). In
particular, f is periodic so has a Fourier series, i.e. can be written as a function of
q = e2πiz (also known as the nome). This gives a function g(q) on the punctured
unit disc. If g extends to a meromorphic (resp. holomorphic) function at the
origin, then f is said to be meromorphic (resp. holomorphic) at infinity.
A weakly modular function is called modular if it is meromorphic at infinity,
and called a modular form if it is holomorphic at infinity.

4



We will not develop any general theory of modular forms; this is done in [2]
and [3]. Instead, we will study some explicit examples of modular forms and
functions which have similar properties.

3.1 Eisenstein Series
An urban legend tells the story of a researcher who studied anti-metric spaces:
ones where the inequality sign in the triangle inequality is reversed. He man-
aged to prove many amazing properties about such spaces, until it was pointed
out that such a space can contain at most one point.
The definition of modular forms forces such functions to exhibit a lot of sym-
metry, which will be useful in later calculations. However, to avoid repeating
others’ mistakes, it would be prudent to first exhibit a non-trivial example of
a modular form after giving the definition. Eisenstein series give some of the
simplest examples of modular forms.
Let k ≥ 3 be an integer and τ ∈ H. Define the Eisenstein series of order k to be
Ek(τ) =

∑
(n,m)∈Z2\(0,0)

1
(n+mτ)k

.

Theorem 5. Eisenstein series have the following properties:

i Ek(τ) converges absolutely for k ≥ 3 and is a holomorphic function of τ

ii Ek(τ) ≡ 0 if k is odd

iii Ek(τ) satisfies Ek(τ + 1) = Ek(τ) and Ek(τ) = τ−kEk(−1/τ),

(ii) is in fact a special case of a more general phenomenon: setting c =
−1, d = 0 shows that the only modular form of weight k when k is odd is the
zero function. Note that absolute convergence means changing the order of
summation is valid, which gives the rest of the properties. Pairing up the (n,m)
term with the (−n,−m) term gives (ii), and doing some algebra gives (iii).
Hence it suffices to prove (i). To this end, we sketch a proof of the following:

Lemma 6. The two series∑
(n,m)∈Z2\(0,0)

1

(|n|+ |m|)r
and

∑
(n,m)∈Z2\(0,0)

1

|n+mτ |r

converge for r > 2

Sketch Proof. We sum the first series in m and then n to show it is convergent,
and hence absolutely convergent since all the terms are positive reals. For n 6= 0∑

m∈Z

1

(|n|+ |m|)r
=

1

|n|r
+ 2

∑
m≥1

1

(|n|+ |m|)r

=
1

|n|r
+ 2

∑
k≥|n|+1

1

kr

≤ 1

|n|r
+ 2

∫ ∞
|n|

dx

xr

≤ 1

|n|r
+

C

|n|r−1
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for some constant C. Then for r > 2, noting that the series
∑
n

1
ns converges if

and only if Re(s) > 1,∑
(n,m)∈Z2\(0,0)

1

(|n|+ |m|)r
≤
∑
m 6=0

1

|m|r
+
∑
n6=0

1

|n|r
+

C

|n|r−1
<∞

Hence the first series converges. To show the second series converges, it suffices
to show there exists positive constants c1, c2 such that c1|n+mτ | ≤ |n|+ |m| ≤
c2|n + mτ | for all n,m ∈ Z. The main observation used is for any positive
numbers A and B,

√
A2 +B2 < A+ B < 2

√
A2 +B2. The rest of the proof is

not interesting so is omitted for ease of exposition.

This gives absolute convergence. Moreover, this gives uniform convergence
in every half-plane Im(τ) ≥ δ > 0, so E2(τ) is holomorphic. This finishes the
proof of the theorem. As τ → ∞, Ek →

∑
n6=0

1
nk

, which converges, so Ek is
holomorphic at infinity and is a modular form of weight k.

Define σk(r) =
∑
d|r d

k, the sum of the kth powers of the divisors of r. Note
that σk(r) <

∑
d|r r

k < rk+1. Let ζ(z) =
∑∞
n=1

1
nz be the infamous Riemann

zeta function. The next theorem highlights a connection of Eisenstein series to
these much studied functions in number theory.

Theorem 7. Let k ≥ 4 be even and τ ∈ H. Then

Ek(τ) = 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∞∑
r=1

σk−1(r)e2πiτr

Proof. For all τ such that Im(τ) = t ≥ t0, |e2πiτr| ≤ e−2πt0r. Together with
the bound for σk given earlier, this shows the series on the right is absolutely
convergent in every half plane t ≥ t0 by comparison with

∑∞
r=1 r

ke−2πt0r. Then,

Ek(τ) =
∑
n 6=0

1

nk
+
∑
m 6=0

∞∑
n=−∞

1

(n+mτ)k

= 2ζ(k) + 2
∑
m>0

∞∑
n=−∞

1

(n+mτ)k

Now recall equation 3. Substituting this in with mτ in place of τ gives

Ek(τ) = 2ζ(k) + 2
∑
m>0

(−2πi)k

(k − 1)!

∞∑
l=1

lk−1e2πimτl

= 2ζ(k) + 2
(−1)k/2(2π)k

(k − 1)!

∑
m>0

∞∑
l=1

lk−1e2πimτl

Finally, changing the order of summation to fix the value of the product r = ml
first and then summing over the divisors of r shows this last series is equal to
2ζ(k) + 2 (−1)k/2(2π)k

(k−1)!

∑∞
r=1 σk−1(r)e2πiτr, as desired.

For k = 2, the series in the definition of E2 doesn’t converge absolutely, so
more care is needed. Define F (τ) =

∑
m

∑
n

1
(n+mτ)2 , which goes by the scary
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sounding name of the forbidden Eisenstein series. The argument given above
can be adapted to show that

F (τ) = 2ζ(2)− 8π2
∞∑
r=1

σ1(r)e2πiτr (4)

The reader is advised to keep the series F and the above result in mind as these
will be quite important later. Next, we demonstrate some properties of the
functions that will appear later.

3.2 The Jacobi theta function
For z ∈ C and τ ∈ H, the Jacobi theta function is defined as

Θ(z, τ) =

∞∑
n=−∞

eπin
2τe2πinz

Proposition 8. Θ has the following properties:

i Θ is entire in z and holomorphic in τ ∈ H

ii Θ(z + 1, τ) = Θ(z, τ)

iii Θ(z + τ, τ) = Θ(z, τ)e−iπτe−2πiz

iv Θ(z, τ) = 0 whenever z = 1/2 + τ/2 + n+mτ for any integers n,m.

Proof. (i) follows from checking the absolute uniform convergence for z in bounded
sets and τ in half planes. Similar calculations are done at many points in the
essay so this one is omitted.
(ii) is immediate from the definition, and (iii) comes from completing the square
in the exponents.
Using the previous periodicity properties, to prove (iv) it suffices to check that
Θ(1/2 + τ/2, τ) = 0.

Θ(1/2 + τ/2, τ) =
∑

n=−∞∞
eπin

2τe2πin(1/2+τ/2)

=
∑

n=−∞∞
(−1)neπi(n

2+n)τ

Pairing up n with −(n + 1), noting that the difference 2n + 1 is odd so they
have different parity, and (−(n + 1))2 + (−n − 1) = n2 + n so the exponential
terms match up, gives that the sum is 0.

Let q = eiπτ . Consider the infinite product, sometimes known as the triple-
product:

Π(z, τ) =

∞∏
n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz)

This turns out to have many of the same properties as Θ:

Proposition 9. Π has the following properties:
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i Π is entire in z and holomorphic in τ ∈ H

ii Π(z + 1, τ) = Π(z, τ)

iii Π(z + τ, τ) = Π(z, τ)e−iπτe−2πiz

iv For a fixed τ , Π(z, τ) = 0 whenever z = 1/2 + τ/2 + n + mτ for any
integers n,m. These are zeros of order 1, and Π has no other zeros.

Proof. If Im(τ) = t ≥ t0 > 0, z = x+ iy, then |q| ≤ e−πt0 < 1 and

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz) = 1 +O(|q|2n−1e2π|z|).∑
|q|2n−1 converges, so by the result for infinite products at the start, (i) holds.

(ii) is clear from the definition.
To prove (iii), note that q2 = e2πiτ , so Π(z + τ, τ) =

∏∞
n=1(1 − q2n)(1 +

q2n+1e2πiz)(1+q2n−3e−2πiz). Comparing with Π(z, τ) and adding in the factors
which are missing on either side gives

Π(z, τ)(1 + (qe2πiz)−1) = Π(z + τ, τ)(1 + qe2πiz)

Noting that none of the factors are zero because |q| < 1 implies qe2πiz 6= −1,
this simplifies to (iii)
Finally, an infinite product vanishes if and only if one of the factors is 0. |q| < 1
so 1− q2n 6= 0. Suppose 1 + q2n−1e2πiz = 0. Then e(πiτ)(2n−1)e2πiz = eπi. This
simplifies to (2n − 1)τ + 2z = 1 + 2m for some integer m. This gives zeros of
the form z = 1/2 + τ/2− n+mτ, n ≥ 1. The other zeros come from the other
factor, where the argument is essentially the same. Also, each zero is simple
since ew − 1 has a simple zero at the origin.

Readers who, staring at how similar the previous results look, guess that Π is
Θ in disguise are right. The proof technique will be one that is used again later,
i.e. that these properties define a unique holomorphic function by appealing to
Liouville’s theorem somehow. First, we prove a lemma.

Lemma 10. Suppose f(z) is an entire function, and τ ∈ C with Im(τ) > 0
that satisfies f(z+1) = f(z) and f(z+τ) = f(z) for all z ∈ C. (Such functions
are called doubly periodic.) Then f is constant.

Proof. Consider the set P = {a + bτ, 0 ≤ a, b < 1}. This is known as the
fundamental parallelogram, and it should be geometrically obvious that the
plane can be tiled with these, so f is completely determined by its values on
P . The closure of P is compact, so f attains its bounds on P . Hence f is a
bounded entire function, so is constant by Liouville’s theorem.

Now the main result.

Theorem 11. For all z ∈ C, τ ∈ H, Π=Θ

Proof. Consider F (z) = Θ
Π . By the previous propositions, F is entire and has

periods 1 and τ . By the previous lemma F is constant. Call this constant c(τ).

Claim. c(τ) = c(4τ)
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Proof. Letting z = 1/2 gives
∞∑

n=−∞
(−1)nqn

2

= c(τ)

∞∏
n=1

(1− q2n)(1− q2n−1)(1− q2n−1)

= c(τ)

∞∏
n=1

[(1− q2n)(1− q2n−1)](1− q2n−1)

As n runs over the natural numbers, the terms in square brackets together give
a factor of (1 − qk) for every natural number k, so c(τ)

∏∞
n=1[(1 − q2n)(1 −

q2n−1)](1− q2n−1) = c(τ)
∏∞
n=1(1− qn)(1− q2n−1), and

c(τ) =

∑∞
n=−∞(−1)nqn

2∏∞
n=1(1− qn)(1− q2n−1)

(5)

Now let z = 1/4. Θ(1/4, τ) =
∑∞
n=−∞(i)nqn

2

. Since 1
i = −i, the terms for odd

n cancel, so Θ(1/4, τ) =
∑∞
m=−∞(−1)mq4m2

. On the other side,

Π(1/4, τ) =

∞∏
m=1

(1− q2m)(1 + iq2m−1)(1− iq2m−1)

=

∞∏
m=1

(1− q2m)(1 + q4m−2)

=

∞∏
n=1

(1− q4n)(1− q8n−4)

This mysterious last line demands explanation. Consider the first factor when
m = 2n − 1 is odd. This can then be paired with the second factor from the
m = n term to give (1−q8n−4). When m = 2n, leave the first factor untouched.
Putting these together and reordering the product gives the last equality. Hence,

c(τ) =

∑∞
n=−∞(−1)nq4n2∏∞

n=1(1− q4n)(1− q4(2n−1))

Equation 5 implies that the right hand side is c(4τ) which gives the result.

Repeatedly applying this gives c(τ) = c(4kτ), and q4k = eiπ4kτ → 0 as
k → ∞. As q → 0, both Π and Θ, and hence F , tend to 1, which shows
c(τ) = 1.

Next we consider transformations in the τ variable. Note that Θ(z, τ + 2) =
Θ(z, τ). Also,

Theorem 12. Θ(z,−1/τ) =
√

τ
i e
πiτz2Θ(zτ, τ)

The branch of the square root is taken such that
√

τ
i > 0 when τ = it, t > 0.

Proof. It suffices to prove this for real z and τ on the imaginary axis, since the
identity theorem does the rest of the work. For x real, τ = it, substituting these
into the series definition of Θ and rearranging shows that it suffices to prove

∞∑
n=−∞

e−πt(n+x)2 =

∞∑
n=−∞

t−1/2e−πn
2/te2πinx
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This last equation is now just equation 2 with a replaced by x.

Next, we turn to the ’children’ of the Jacobi theta function

3.3 The (little) theta function

Define θ(τ) = Θ(0, τ) =
∑∞
n=−∞ eπin

2τ . This naturally inherits a lot of prop-
erties from the Jacobi theta function and will be used a lot in the next two
sections, so readers are advised to familiarise themselves with the next few re-
sults.
A consequence of the product formula for Θ is θ(τ) =

∏∞
n=1(1−q2n)(1+q2n−1)2,

so θ is never 0. Moreover, as a consequence of Theorem 12, if Im(τ) > 0

θ(
−1

τ
) =

√
τ

i
θ(τ) (6)

Proposition 13.

θ(1− 1/τ) =

√
τ

i

∞∑
n=−∞

eπi(n+1/2)2τ

=

√
τ

i
(2eπiτ/4 + . . . )

which means that θ(1− 1/τ) ∼
√

τ
i 2eπiτ/4 as Im(τ)→∞.

Proof. Since n, n2 have the same parity, θ(1+τ) =
∑∞
n=−∞(−1)nqn

2

= Θ(1/2, τ).
Then, together with theorem 12,

θ(1− 1/τ) = Θ(1/2,−1/τ)

=

√
τ

i
eπiτ/4Θ(τ/2, τ)

=

√
τ

i

∞∑
n=−∞

eπi(n+1/2)2τ

= 2

√
τ

i

∞∑
n=0

eπi(n+1/2)2τ

Let Im(τ) = t. The sum of the k 6= 0 terms is of order O(
∑∞
k=1 e

πi(k+1/2)2τ ) =
O(e−9πt/4)

3.4 Dedekind eta function
The last function to consider is the Dedekind eta function, which will be used
in the proof of the four squares theorem. For Im(τ) > 0, define

η(τ) = e
πiτ
12

∞∏
n=1

(1− e2πinτ )

Proposition 14. For Im(τ) > 0, η(−1
τ ) =

√
τ
i η(τ)

10



Proof. Using the product formula for the Jacobi theta function and shifting the
third factor,

Θ(z, τ) = (1 + qe−2πiz)

∞∏
n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz).

Note that the first factor vanishes at z0 = 1/2 + τ/2.
Define H(τ) =

∏∞
n=1(1− e2πinτ )3. Differentiating Θ with respect to z gives

Θ′(z, τ) = (1 + qe−2πiz)
d

dz
(

∞∏
n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz))

+
d((1 + qe−2πiz))

dz
(

∞∏
n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz))

Substituting z = z0 makes the first term disappear, and we are left with

Θ′(z0, τ) = 2πiH(τ)

Replace −1/τ by τ in Theorem 12 then gives

Θ(z, τ) =

√
i

τ
eπiz

2/τΘ(−z/τ,−1/τ)

Differentiating this, evaluating at z0 and simplifying then gives

e
πiτ
4 H(τ) = (

i

τ
)

3
2 e−

πi
4τH(1/τ)

When τ = it, t > 0, η(τ) is a positive real number, as are all the terms in the
above equation. Hence, taking cube roots, the claim in the proposition is true
on the imaginary axis, and by the identity theorem it is true everywhere in
H.

These are all the preliminary results, and the fruits of our labour will soon
be seen in the next sections, which illustrate the utility of modular forms in
number theory.

4 Sum of two squares theorem
The question to be answered in this section is the following: Given a positive
integer n, how many ordered pairs (a, b) ∈ Z2 are there such that n = a2 + b2?
Denote this number by r2(n). By considering squares modulo 4, one can quickly
see that r2(n) = 0 if n ≡ 3 mod 4, but then one quickly becomes stuck when
trying to find all n with r2(n) > 0 using this approach. The correct result is:

Theorem 15. A positive integer n is representable (as a sum of two squares)
if and only if every prime p ≡ 3 mod 4 appears with an even exponent in the
prime factorization of n.

The legendary mathematician Pál Erdős believed that God keeps a book
of the most elegant proofs of every theorem in mathematics, and many Book

11



proofs of this theorem have appeared over the years since Fermat first claimed
that an odd prime p can be written as the sum of two squares if and only if p ≡ 1
mod 4.1 Interested readers should see [4]. One might ask why we went through
the great trouble of the past sections when a much simpler proof of the exact
same result is available. The cynic might suggest it is to show off our knowledge
of complex analysis: when the only tool you have is a hammer, every problem
seems like a nail. Less facetiously, a new proof of an known result is never a
bad thing, and often sheds new light on the problem. Crucially, many of these
proofs have the disadvantage that no indication of the actual value of r2(n) is
given (in the cases where it is non-zero). As we shall see, an approach based on
complex analysis, while arguably not as beautiful, gives an exact formula in the
case of two and four squares.2 With the historical and philosophical remarks
aside, we turn our attention to the mathematics.

Let q = eiπτ . Since θ(τ) =
∑∞
n=−∞ qn

2

,

θ(τ)2 = (

∞∑
n1=−∞

qn
2

)(

∞∑
n2=−∞

qn
2

) =
∑

(n1,n2)∈Z2

qn
2
1+n2

2 =

∞∑
n=0

r2(n)qn (7)

where absolute convergence allows us to change the order of summation and
r2(0) = 1, and as a sanity check the last sum converges for |q| < 1 since r2(n) <
4n + 2: the first number in the ordered pair must have modulus at most n,
and the second number can take two possibilities (if any). Similar remarks will
apply to other sums which appear later. Thus, θ(τ)2 is the generating function
for the sequence {r2(n)}. This much is motivatable.
Let d1(n) be the number of divisors of n which are ≡ 1 mod 4, and d3(n) be
the number of divisors of n which are ≡ 3 mod 4. In the source material, the
correct result

Theorem 16. r2(n) = 4(d1(n)− d3(n)), n ≥ 1

is given, and the entire section is devoted solely to proving it. However, a
couple of remarks are in order. The first is very minor: we could have defined
r2(n) to be the number of unordered pairs of positive integers whose sum of
squares is n, which at first sight is a simplification, but then computing its gen-
erating function would be messier.
The second is the question of how one might come up with this formula if one
didn’t already know it. If one believes Fermat’s result for odd primes, it sug-
gests a connection between r2(n) and the mod 4 properties of a numbers divisors.
Noting the identity (a2 + b2)(c2 + d2) = (ad+ bc)2 + (ac− bd)2 3, which in turn
comes from looking at (a+ ib)(c+ id) = (ac− bd)+ i(ad+ bc) and taking norms,
and the well-known fact that 2 = 12 + 12, one could decide to consider the odd
divisors only. Small cases would then give the conjecture, which can be verified

1Characteristically, Fermat gave no proof, hence the use of the word ’claimed’. This author
thinks that he should have used paper with larger margins.

2A great many powerful results in analytic number theory are proved by exploiting the
amazing properties of holomorphic functions, but some have criticised this approach as not
really shedding light on the number-theoretic aspect of the results. Sadly, a detailed discussion
of this topic, and the alternative viewpoints, would be well beyond the scope of this essay.

3Sometimes known as the Brahmagupta-Fibonacci identity, which is a bit unnecessary
since it takes about as much ink to just write out the identity.
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directly for primes. If x2 + y2 = p ≡ 1 mod 4, then p = (x+ iy)(x− iy) in Z[i],
which is a unique factorization domain, so the representation is ’unique’, giving
r2(p) = 8. One could then make a conjecture, and set about proving it with the
machinery of generating functions and complex analysis, which is what follows.
However, the reader is advised to remember this point, as we will return to it.

r2(n) = 4(d1(n) − d3(n)) is equivalent to the statement that they have the
same generating function, so consider the generating function of d1(n), d3(n).

∞∑
k=1

d1(k)qk =

∞∑
n=1

∞∑
m=0

qn(4m+1) =

∞∑
n=1

qn

1− q4n
(8)

and similarly d3(n) has generating function
∑∞
n=1

q3n

1−q4n , so 4(d1(n)−d3(n)) has

generating function 4
∑∞
n=1

qn

1−q4n −
q3n

1−q4n = 4
∑∞
n=1

qn

1+q2n . Hence, the problem
now becomes showing that

θ(τ)2 = 1 + 4

∞∑
n=1

qn

1 + q2n
= 2

∞∑
n=−∞

1

qn + q−n
=

∞∑
n=−∞

1

cosnπτ
(9)

where the last equality follows from remembering that q = eiπτ . This should
seem promising, since the cosine function displays periodicity, and the symme-
try of the range of summation could give other properties that match those of
θ. One could then hope to find enough properties to force the two (generating)
functions to be equal, exploiting the fact that far weaker conditions are neces-
sary for holomorphic functions to be equal compared to differentiable functions
over the reals. Indeed, this is what comes next.
Call the last series, the sum of cosines, C(τ). Clearly, C(τ + 2) = C(τ). Also,
as Im(τ) → ∞, | cosnτπ| → ∞, just by looking at the definition in terms of
exponentials, so C(τ)→ 1 (only the n = 0 term is left). We now abuse equation
1.
Setting a = 0, we get

∑∞
n=−∞

1
cosh πn

t
=
∑∞
n=−∞

t
coshπnt , and letting t = τ

i ,
noting the definition of cosh and cos in terms of exponentials, gives that C(τ) =
i
τC(−1

τ ) for all τ on the positive imaginary axis. It is then true for all τ in H
by the identity theorem.
At this point, we know that C and τ have the same quasi-modular properties,
and display the same behaviour for large values of Im(τ). The last part of H
which is of interest, i.e. where there might be pathological behaviour, is when
τ gets close to the real axis. Since the map z 7→ −1

z fixes the unit circle and
swaps the regions inside and outside the circle, applying the periodicity and
the Mobius map should determine the behaviour, except for when τ is near 1.
Hence one more result is needed.
Setting a = 0.5 in equation 1 this time,

∑∞
n=−∞

(−1)n

cosh πn
t

=
∑∞
n=−∞

t
coshπ(n+ 1

2 )t
.

Again setting t = τ
i , and noting that cos (x+ nπ) = (−1)n cosx, we get that

C(1 − 1
τ ) =

∑∞
−∞

τ
i

1
cosπ(n+ 1

2 )τ
= 2 τi

∑∞
0

1
cosπ(n+ 1

2 )τ
on the positive imagi-

nary axis, and hence everywhere in H by the identity theorem again. Writing
1

cosπ(n+ 1
2 )τ

= 2eiπ(n+1
2
)τ

1+eiπ(2n+1)τ , we see that as Im(τ) → ∞, n = 0 is the dominant

term, i.e. C(1 − 1
τ ) ∼ 4 τi e

πiτ/2 as Im(τ) → ∞. Hence the following theorem
has been proved:
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Theorem 17. C satisfies the following properties:

i C(τ + 2) = C(τ)

ii C(τ) = i
τC(−1

τ )

iii C(τ)→ 1 as Im(τ)→∞

iv C(1− 1
τ ) ∼ 4 τi e

πiτ/2 as Im(τ)→∞

These are the exact same properties that θ2 has (c.f. equation 6 and propo-
sition 13). Furthermore, θ2 has no zeros in H by the product formula, so f = C

θ2

is a holomorphic function of τ in H. Since the goal is to show that this is iden-
tically 1, we need some sort of result that says the conditions we have force f to
be constant. First note that f(−1

τ ) = f(τ) = f(τ + 2). Next, by an analogous
argument to that given in the section on modular forms, the following is true:

Lemma 18. Every point in H can be mapped to a point in F = {τ ∈ H|Re(τ) ≤
1and|τ | ≥ 1} by finitely many applications of one of the following Mobius maps
or their inverses:

i T : τ 7→ τ + 2

ii S : τ 7→ − 1
τ .

Note that this is the general construction for any finite index subgroup of
the modular group: it is possible to consider functions obeying the equation for
any element of the finite index subgroup, and is determined by its values on the
corresponding fundamental domain.
With this result, we now see that f is bounded: the open unit disc can be confor-
mally mapped to H by some function g, and the preimage of F only approaches
three points on the boundary of the unit disc. f ◦g defines a function on g−1(F)
which is bounded near the boundary of the unit disc, and after removing some
suitable neighbourhood of those points, the rest of the domain is compact, so
f ◦ g must be bounded. Hence f is bounded on F, and therefore on H.
The asymptotics of C and θ2 imply that f → 1 as τ → ±1 (known as the cusps),
and as Im(τ)→∞. Since we want to show that f is identically 1, and know it
tends to 1 at the boundary, it suggests we try some sort of maximum modulus
principle argument.
Suppose f is not constant. Define g(eiπτ ) = f(τ), noting this is well defined by
the periodicity of f , g is a non-constant holomorphic function on the punctured
unit disc. f(τ) → 1 as Im(τ) → ∞, so the singularity at z = 0 is removable.
Then by the maximum modulus principle applied to g, there is some w such that
|g(w)| > |g(0)|, so there is some τ0 ∈ F such that |f(τ0)| > 1. Since f(τ) → 1
as τ → ±1, |f | attains its maximum in the interior of H, which contradicts the
maximum modulus principle. Hence f must be a constant, and asymptotics
force the constant to be 1, as desired.

The theorem given at the beginning of the section can now be deduced as a
corollary: suppose qa1 . . . qak are the primes ≡ 3 mod 4 dividing n. Then if
2 - d|n, d ≡ 1 mod 4 if and only if the sum of the exponents of the qai is even.
If any qai appears with odd exponent in n, then multiplying by powers of this
prime gives a bijection between odd divisors ≡ 1 mod 4 and ≡ 3 mod 4. If
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every qai appears with even exponent, then r2(n) > 0.

We now revisit the connection with the Gaussian integers. (d1(n) − d3(n)) =∑
d|n,2-d(−1)

d−1
2 = c(n). This latter function is in fact multiplicative: c(mn) =

c(m)c(n) for m,n coprime. To see this,

c(m)c(n) = (
∑

c|m,2-c

(−1)
c−1
2 )(

∑
d|n,2-d

(−1)
d−1
2 ) =

∑
c|m,d|n2-c,d

(−1)
c−1+d−1

2

Now, cd−1
2 − c−1+d−1

2 = (c−1)(d−1)
2 , which is even since both c and d are odd.

Also, every divisor cd of mn arises uniquely as the product of a divisor of m and
a divisor of n if m,n are coprime, so c(m)c(n) =

∑
cd|mn,2-cd(−1)

cd−1
2 = c(mn).

One can then check that r2(n) = 4c(n) holds for all prime powers, with the
main case being pk when p ≡ 1 mod 4. Note that p uniquely factorises as
(a + ib)(a − ib), and writing n = x2 + y2 is equivalent to specifying, up to
multiplication by units, n = (x + iy)(x − iy). For pk, the factor (x + iy) can
arise in c(pk) = k + 1 ways, corresponding to the number of times the factor of
(a+ ib) is taken (as opposed to its conjugate). The factor of 4 appears because
Z[i] has 4 units: ±1,±i. This draws out the multiplicative nature and some sort
of connection to the whether the primes in the factorization are representable.
In fact, multiplicative functions have become an active area of modern research,
particularly as an alternative to the complex analysis based approach alluded
to in a previous footnote. Interested readers should see for example the works
of Granville and Soundararajan.
The next section covers the four squares theorem, in which the reader should
notice how much the argument resembles that given for the two squares theorem.

5 Four squares theorem
Knowing the result and proof for the case of two squares, we now do the anal-
ogous calculations for the four squares case.
The generating function for r4(n) is given by θ(τ)4. In the previous section a
nice sum of cosines was found. No such luck this time. Define

E∗2 (τ) =
∑
m

∑
n

1
mτ
2 + n

−
∑
m

∑
n

1
n
2 +mτ

(10)

ignoring the terms where m = 0 = n. This is basically a couple of Eisenstein
series: E∗2 (τ) = F ( τ2 )− 4F (2τ).

Also define σ∗1(n) =
∑

4-d|n d. Then σ
∗
1(n) =

{
σ1(n), 4 - n
σ1(n)− 4σ(n/4), 4|n

Let q = eiπτ . We claim now that

− 1

π2
E∗2 (τ) = 1 +

∞∑
k=1

8σ∗1(k)qk (11)

But remembering the following fact proved at the end of the section on Eisen-
stein series, F (τ) = π2

3 − 8π2
∑∞
k=1 σ1(k)e2πikτ and substituting in gives the

result. We will abuse this equation some more in what follows.
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By the periodicity of F , it is immediate that E∗2 (τ + 2) = E∗2 (τ). Letting
Im(τ) → ∞ in the above series for F also shows that F → π2

3 , so E∗2 → −π2.
Comparing with the two squares theorem, the next step is to show that E∗2 has
the same modular properties as −π2θ4.
Next on the list of properties is the following: E∗2 (τ) = −τ−2E∗2 (−1/τ). For
that, we need to consider F (−1/τ). Define F̃ (τ) =

∑
n

∑
m

1
mτ+n , omitting the

m = 0 = n term. Note that the series defining F isn’t absolutely convergent, so
the order of summation matters. Now we prove:

Lemma 19. F, F̃ satisfy

i F (−1/τ) = τ2F̃ (τ)

ii F (τ)−F̃ (τ) = 2πi
τ (note this proves to any skeptical readers that the series

doesn’t converge absolutely, since it turns out the order of summation does
matter)

iii F (−1/τ) = τ2F (τ)− 2πiτ

Proof. The first property follows from simple algebra.
Consider the Dedekind eta function η(τ) = q

1
12

∏∞
n=1(1− q2n). Taking logarith-

mic derivatives gives
η′

η
=
πi

12
− 2πi

∞∑
n=1

nq2n

1− q2n
(12)

But
∞∑
n=1

nq2n

1− q2n
=

∞∑
n=1

∞∑
l=0

nq2nq2ln =

∞∑
n=1

∞∑
m=1

nq2mn =

∞∑
n=1

σ1(k)q2k (13)

where the last equality comes from fixing the value k of the productmn and then
allowing n to run over the divisors of k. This amounts to changing the order of
summation, which is once again valid due to absolute convergence. Comparing
with the series for F then gives

η′

η
=

i

4π
F (τ)

We have also proved that η(τ) satisfies η(−1/τ) =
√

τ
i η(τ), and taking loga-

rithmic derivatives and rearranging the resulting equation gives (ii).
Putting (i) and (ii) together gives (iii).

Applying (iii) to E∗2 (τ) = F ( τ2 )−4F (2τ) gives the desired property for E∗2 (τ).

Finally, we have to study the behaviour at the cusp. E∗2 (1 − 1/τ) = F ( 1
2 (1 −

1/τ)) − 4F (2(1 − 1/τ)), so we deal with each term in turn (repeatedly) using
the last lemma. For the first term,

F (
1

2
(1− 1/τ)) = (

2τ

τ − 1
)2F (

2τ

τ − 1
)− 2πi

2τ

τ − 1
,

and

F (
2τ

τ − 1
) = F (−2 +

2

1− τ
) = F (

2

1− τ
) = (

1− τ
2

)2F (
τ − 1

2
)− 2πi(

τ − 1

2
)
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For the second term,

F (2(1− 1/τ)) = F (−2/τ) = (
τ

2
)2F (

τ

2
)− 2πi

τ

2

Substituting all of these into the expression for E∗2 gives

E∗2 (1− 1/τ) = τ2(F (
τ − 1

2
)− F (

τ

2
)) (14)

Using the series expansion for F , we have thus proved the following:

Proposition 20. E∗2 satisfies the following properties:

i E∗2 (τ + 2) = E∗2 (τ)

ii E∗2 (τ) = −1
τ2 E

∗
2 (−1

τ )

iii E∗2 (τ)→ −π2 as Im(τ)→∞

iv |E∗2 (1− 1
τ )| = O(|τ2eπiτ |) as Im(τ)→∞

−π2θ4 also satisfies these properties (c.f. equation 6 and proposition 13).
Unfortunately, we are not done yet. Defining f =

E∗2
−π2θ4 , which we would like

to be identically 1 in H, (iv) only says f is bounded near the cusp, but not what
value it tends to. We could try and compute it, in the hope it turns out to be 1,
then we could apply the same maximum modulus principle argument. However,
it turns out the following is true:

Theorem 21. Suppose f is a holomorphic function on H satisfying

i f(τ + 2) = f(τ)

ii f(τ) = f(−1/τ)

iii f is bounded

Then f is constant.

Proof. The argument follows the one we gave for the two squares theorem,
except now more machinery is needed to handle the point at the cusp. However,
the idea is the same, as one could potentially guess from the mapping to the
unit disc, since in the extended complex plane (or Riemann sphere) there is not
really anything special about infinity, and for example in half-plane model of
hyperbolic geometry, points on the real line are basically the same as the point
at infinity.
Consider F (τ) = f(1− 1

τ ). This interchanges the roles of 1 and ∞, so if we can
show that |F | doesn’t tend to its supremum as Im(τ) → ∞ then f wouldn’t
attain its maximum near the cusp, so it would attain its maximum modulus in
the interior of H and we reach the same contradiction as before. In particular,
the contradiction arose last time from defining a function on the unit disc so
that we could apply the maximum modulus principle.
We prove that F is periodic. Define functions un(τ) = (1−n)τ+n

−nτ+(1+n) , µ(τ) =
1

1−τ , Tn(τ). Then un = µ−1Tnµ, so unum = un+m and u−1 = T2S. Hence any
un can be obtained by finitely many applications of T2, S, or their inverses.
Since f is invariant T2, S, it is invariant under un, so f(µ−1Tnµ(τ)) = f(τ).
Since F (τ) = f(µ−1(τ), F (Tn(τ)) = F (τ) for all n ∈ Z. In particular, F has
period 1, so h(e2πiτ ) = F (τ) is the function on the disc, which completes the
proof.
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Using this result, f ≡ 1 in H, so we have proved that r4(n) = 8σ∗1(n). In
particular, this is always ≥ 1 since 1 is always a divisor, so every number can
be written as a sum of 4 squares.

6 What next?
The case for 8 squares follows the exact same argument and is given as an
exercise in [1]. In chapter 7 of [3], the increasingly complicated formulae for
r2k, 1 ≤ k ≤ 12 are listed. The explanation for why the answers get messier is
that the space of modular forms of a given weight is a vector space over C, whose
dimension can be calculated. For small k, this dimension is 1, and studying the
Eisenstein series suffices, but when the dimension increases, other forms have
to be studied.
The reader may be wondering what of sums of an odd number of squares, which
aren’t covered in [3]. This is a much tougher question to answer, which we will
not go into, but make two observations which might suggest why this is more
difficult.
The first is (12 + 12 + 12)(22 + 12 + 02) = 15, which can’t be written as the sum
of 3 squares. This illustrates that unlike in the cases of 2 and 4 squares, there
is no identity guaranteeing that the product of a sum of 3 squares is a sum of
3 squares (there are very deep reasons why no such identity can exist: see [5]).
Legendre’s three square theorem states a number is a sum of 3 squares if and
only if it is not of the form 4a(8b+ 7) for nonnegative integers a, b.
The second is equation 6. The generating function for the sum of k squares is
θk. When k is even this obeys a modular form type relation, but when k is
odd, this contains a square root, and requires developing the theory of modular
forms of non-integer weights.
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